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What is Hematopoiesis?

Hematopoeisis: Process of specialization of stem cells into
mature blood cells

• HSCs differentiate (specialize) into progenitor cells:
multi-stage process

• Progenitor cells further differentiate to white/red blood
cells, platelets, etc. This is well-studied.

• Little is known about early stages: unidentifiability of
HSCs



A Stochastic Model

• First birth-death model for hematopoeisis: Till et al, 1963

• Experimentally justified, refined over several studies

• Current paper analyzes hidden two-compartment model



A Stochastic Model
Goal: Develop inferential tools for this problem, and for a class
of stochastic population processes

Statistical motivation: Tools for inference in a useful class of
models. Hidden compartmental processes include

• SIR models

• Spread of malaria in human host (Gravenor 1998)

Application: Clinical and biological importance

• Cancer therapy: stem cell transplantation

• Gene therapy

• ”A remarkable cell renewal process”; close to 1 trillion
cells per day supported by HSCs (M. Ogawa)



Experimental design

Female safari cat study

• Distinct G6PD phenotype expressed as d or G

• Retained after replication/differentiation; neutral

• Provides binary marker of each cell and its clones

Observing proportion of, say d , allows us to “track” HSC
behavior



The model



The model

Simple continuous time, discrete state process:

• Compartment 1 is a linear birth-death (BD) process

• Compartment 2 is a non-homogeneous immigration-death
process

• Inference: rates λ, ν, µ

Likelihood: L(λ, ν, µ) ∝ λBT νETµDT exp(−(λ + ν)S z
T − µSx

T )

• BT = births, ET = emigrations, DT = deaths, S i
T =

total time in i

• MLEs available: λ̂ = BT/S
z
T , ν̂ = ET/S

Z
T , µ̂ = DT/S

x
T ;

nice asymptotic properties



Difficulty: Partial Observations

We only have sampled values from the second compartment:
Y (t), the total cells marked d , is a hidden Markov process

[Y (t)|(x(t), z(t))] ∼ Binom(Nt ,
xd(t)

xd(t) + xG (t)
)

• Distribution of this binomial proportion mathematically
difficult

• Exact likelihood methods infeasible

• No successful attempts in obtaining transition
probabilities



Other Approaches

• Abkowitz (1996): vary parameters and simulate
realizations: compare simulations to true data

• Catlin (1997): normal approximation of transition
probabilities

• Golinelli (2006): Bayesian inference via RJMCMC

• Integrate over paths between discrete observations

• Most precise estimates and effective use of data at
computational cost



Other Approaches



Current Method

Estimating equation approach

• Calculate moments of process by solving Kolmogorov
forward equation

• Create estimating function relating these expressions and
data

• Method of moments cannot be used directly: differing
population sizes over realizations at given time

• Solve using nonlinear least squares



Discussion

• Simulations starting with estimated rates close to
observed data

• Parameter estimates very similar to results from other
studies

• Minor discrepancies: theoretical and simulated errors

• Advantages: not restricted to large population sizes

• Accurate parameter estimates without much
computational cost

• Provides standard error estimates

• Drawbacks: does not utilize all data efficiently

• Dependent on number of realizations
• Biological shortcomings



Discussion

Closing remarks: While not able to make as efficient use of
data as stochastic integration methods, provides a more
“elegant” solution that is accurate and applicable when
MCMC methods become infeasible.

Studying hematopoiesis via two-compartment stochastic
model has provided much insight to understanding the
complex behavior of HSCs.



The Kolmogorov Forward Equation

From Bailey (1964), we can obtain a PDE for CGF of
multi-dimensional Markov processes as

dK (θ1, θ2; t)

dt
=

∑
j ,k

(e jθ1+kθ2 − 1)fjk(
d

dθ1
,
d

dθ2
)K (θ1, θ2; t)

In our case, the fjk are simple rates:

f1,0 = λx , f−1,1 = νx , and f0,1 = µy .

Thus,

dK (θ1, θ2; t)

dt
= [λ(eθ1−1)+ν(e−θ1+θ2−1)]

dK

dθ1
+µ(e−θ2−1)

dK

dθ2



Getting the cumulants

• Since CGF = log(MGF), the first and second cumulants
κ1, κ2 yield mean, variance

• We can obtain a system of ODE’s for cumulants by
expanding the CGF, taking partial derivatives, and
equating coefficients of products of θi

• Successively solving yields desired moments



Getting the cumulants: example

Consider the simple case of a linear birth-death process:

dK

dt
= [λ(eθ − 1) + µ(e−θ − 1)]

dK

dθ

The cumulant generating function

K (θ) = κ1θ + κ2θ
2/2! + κ3θ

3/3! + . . .

Differentiating this with respect to θ and t yields

d2K

dtdθ
=

dκ1
dt

+ θ
dκ2
dt

+ . . .

To get κ1...



Getting the cumulants: example

• Differentiate forward equation with respect to θ:

d2K

dtdθ
= (λeθ − µe−θ)dK

dθ
+ [λ(eθ − 1) + µ(e−θ − 1)]

d2K

dθ2

• Evaluate at θ = 0 in both expressions and equate:

dκ1
dt

= (λ− µ)κ1

• We arrive at an ODE! In this case, it is easily solvable:

κ1 = e(λ−µ)t



Getting the cumulants: example

Similarly, κ2 is obtained by taking d2

dθ2
: we obtain

dκ2
dt

= (λ + µ)κ1 + 2(λ− µ)κ2, which has solution

κ2 =
λ + µ

λ− µ
e(λ−µ)t(e(λ−µ)t − 1)

• These solutions actually relevant: recall, reserve
compartment is a linear birth-death process

• Analogous expansion of our bivariate CGF: system of five
ODE’s; closed forms for means and variances available



Deriving the estimating equation: setup

• Particle independence: treat the process beginning with r0
cells as a sum of r0 independent processes beginning with
1 cell: justifies application of CLT.

• Aymptotics of observed proportion P(t) := xd (t)
xd (t)+xG (t)

obtained using the moments calculated and applying delta
method: √

(r0)(P(t)− 1/2)→ N[0, σ2
P1(t)

]

• σ2
P1(t)

is a nasty expression: it is important that it is a

nonlinear function of three variables (λ, ν, µ)



Deriving the estimating equation: expectation and

variance

Remember, we observe the proportion P(t) in the second
compartment to estimate the true proportion Y (t)/n(t): using
iterated expectations/variances by conditioning on P(t),

• E (Y (t)
n(t)

) = 1/2

• Var(Y (t)
n(t)

) = (1− 1
n(t)

)σ2
P(t) + 1

4n(t)

• Across realizations given a time t, inference can be based
on the sample variance for (yi , ni) at realizations (cats)
i = 1, . . . ,m.



Almost there...

Thus, we cook up a function

gt(
yi
ni

) = (
yi
ni
− 1

2
)/

√
(1− 1

ni
σ2
P(t) +

1

4ni

constructed to have variance equal to 1.

Setting
∑m

i=1 g
2
t ( yi

ni
)/m = 1, we arrive at the estimating

function

Ψj ,mj
(θ) =

1

mj

mj∑
i=1

( yi
ni
− 1

2
)2

(1− 1
ni
σ2
P(tj )

+ 1
4ni

)
− 1 = 0

where θ = (λ, ν, µ)



Solving the equation

• Observations from at least three times tj allows us to
solve for the three unknowns.

• Nonlinear system: numerical solution

• Asymptotic variance of estimates: use modified Huber’s
M Theorem (maybe next time...)

• Next, let’s try it out on some data



Missing data (seriously)



Missing data (seriously)
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Solving the equation in R

• Because observations are sparse, we choose weeks 15, 51,
and 267, and group together observations within 3 week
intervals

• 11, 11, and 6 cats were available, respectively

• Solution using rootSolve, BB packages: similar results,
sensitive to initial guess



Point estimates

Given in terms of p = λ
λ+ν

and g = λ− ν, over range of r0

• Interpretation: p is probability that a given decision in
reserve is self-renewal, g is the intensity of the reserve

• Similar to results from paper, but not identical

• Could be due to differing dataset, or choice of
observations



Point estimates: p
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Point estimates: g
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Point estimates: µ
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What’s next

• Solve using data from all time points using non-linear
least squares

• Understand and compute standard errors

• Simulation and validation starting with point estimates

• Investigate transition probability calculations: re-derive
Kolmogorov equation for pseudo-generating functions
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