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What is Hematopoiesis?

Hematopoeisis: Process of specialization of stem cells into
mature blood cells

• HSCs differentiate (specialize) into progenitor cells:
multi-stage process

• Progenitor cells further differentiate to white/red blood
cells, platelets, etc. This is well-studied.

• Little is known about early stages: unidentifiability of
HSCs



Experimental design

Female safari cat study

• Distinct G6PD phenotype expressed as d or G

• Retained after replication/differentiation; neutral

• Provides binary marker of each cell and its clones

Observing proportion of, say d , allows us to “track” HSC
behavior



The model



The model

Simple continuous time, discrete state process:

• Compartment 1 is a linear birth-death (BD) process

• Compartment 2 is a non-homogeneous immigration-death
process

• Inference: rates λ, ν, µ

Likelihood: L(λ, ν, µ) ∝ λBT νETµDT exp(−(λ + ν)S z
T − µSx

T )

• BT = births, ET = emigrations, DT = deaths, S i
T =

total time in i

• MLEs available: λ̂ = BT/S
z
T , ν̂ = ET/S

Z
T , µ̂ = DT/S

x
T ;

nice asymptotic properties



Difficulty: Partial Observations

We only have sampled values from the second compartment:
Y (t), the total cells marked d , is a hidden Markov process

[Y (t)|(x(t), z(t))] ∼ Binom(Nt ,
xd(t)

xd(t) + xG (t)
)

• Distribution of this binomial proportion mathematically
difficult

• Exact likelihood methods infeasible

• No successful attempts in obtaining transition
probabilities



Current Method

Outline of current approach

• Calculate moments of process by solving Kolmogorov
forward equation

• Create estimating function relating these expressions and
data

• Solve numerically using full data and three time points

• Simulate process from estimated parameters



The Kolmogorov Forward Equation

From Bailey (1964), we can obtain a PDE for CGF of
multi-dimensional Markov processes as

dK (θ1, θ2; t)

dt
=

∑
j ,k

(e jθ1+kθ2 − 1)fjk(
d

dθ1
,
d

dθ2
)K (θ1, θ2; t)

In our case, the fjk are simple rates: f1,0 = λx , f−1,1 = νx , and
f0,1 = µy . Thus,

dK (θ1, θ2; t)

dt
= [λ(eθ1−1)+ν(e−θ1+θ2−1)]

dK

dθ1
+µ(e−θ2−1)

dK

dθ2



Getting the moments via cumulants

• Since CGF = log(MGF), the first and second cumulants
κ1, κ2 yield mean, variance

• We can obtain a system of ODE’s for cumulants by
expanding the CGF, taking partial derivatives, and
equating coefficients of products of θi

• Successively solving yields desired moments



Deriving the estimating equation: setup

• Particle independence: treat the process beginning with r0
cells as a sum of r0 independent processes beginning with
1 cell: justifies application of CLT.

• Aymptotics of true proportion P(t) := xd (t)
xd (t)+xG (t)

obtained
using the moments calculated and applying delta method:√

(r0)(P(t)− 1/2)→ N[0, σ2
P1

(t)]

where the asymptotic variance is a nonlinear function of
λ, ν, µ:

σ2
P1

(t) =
(λ− ν + µ)2

8ν2(exp{(λ− ν)t} − exp(−µt))2
VC1(t)



Deriving the estimating equation: expectation and

variance

Remember, we observe Y (t)/n(t), which is binomial with
proportion P(t): using iterated expectations/variances by
conditioning on P(t),

• E (Y (t)
n(t)

) = 1/2

• Var(Y (t)
n(t)

) = (1− 1
n(t)

)σ2
P(t) + 1

4n(t)

• Across realizations given a time t, inference can be based
on the sample variance for (yi , ni) at realizations (cats)
i = 1, . . . ,m.



Ta-da!

Thus, we come up with a function

gt(
yi
ni

) = (
yi
ni
− 1

2
)/

√
(1− 1

ni
)σ2

P(t) +
1

4ni

constructed to have variance equal to 1.

Setting
∑m

i=1 g
2
t ( yi

ni
)/m = 1 and rearranging, we arrive at the

estimating function

Ψj ,mj
(θ) =

1

mj

mj∑
i=1

( yi
ni
− 1

2
)2

(1− 1
ni

)σ2
P(tj )

+ 1
4ni

− 1 = 0

where θ = (λ, ν, µ)



Solving the equation

• Observations from at least three times tj allows us to
solve for the three unknowns.

• Nonlinear system: numerical solution

• Asymptotic variance of estimates: Huber M
Theorem/Sandwich estimates + delta method

• Let’s try it out on the experimental data (Abkowitz)



The Data



The Data
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Solving the equation in R

• Weeks 15, 51, and 267 are used, grouping observations
within 3 week intervals

• Similar estimates using optim, rootSolve, BB packages;
sensitive to initial guess and choice of observations

• Point estimates reported in terms of p = λ
λ+ν

and
g = λ− ν, over range of r0 values

• Interpretation: p is probability that a decision in reserve is
self-renewal, g is the intensity of growth in reserve



Point estimates: p
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Point estimates: g
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Point estimates: µ
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Comparison of estimates and SE: 3 time points

r0 p̂ SE ĝ SE µ̂ SE
10 0.554 0.025 0.026 0.035 0.188 0.155

0.554 0.023 0.027 0.040 0.183 0.187
15 0.536 0.017 0.025 0.038 0.295 0.397

0.536 0.015 0.026 0.039 0.285 0.477
50 0.511 0.005 0.025 0.038 0.640 3.54

0.511 0.005 0.025 0.038 0.603 3.84
100 0.505 0.002 0.025 0.037 0.721 5.97

0.505 0.002 0.025 0.038 0.603 5.61
200 0.503 0.001 0.025 0.037 0.716 6.53

0.503 0.001 0.025 0.038 0.591 5.82

Table: Here we use the point estimates based on keeping the later
points using optim(). Estimates obtained by authors of paper in
gray



Comparison of point estimates: full data

r0 p̂ ĝ µ̂
10 0.551 0.018 0.319

0.551 0.015 0.304
15 0.533 0.014 0.599

0.534 0.014 0.610
50 0.510 0.014 5.670

0.510 0.014 5.893
100 0.505 0.014 22.090

0.505 0.014 22.973
200 0.502 0.014 87.235

0.503 0.014 90.811

Table: Point estimates using all data between t = 0 and t = 330,
assuming all ni = 67. Again, estimates from paper in gray



Simulation and model validation

1000 sets of 11 realizations/“cats” are generated, starting
with the estimated rates and specified r0 sizes.

• Using simulated data, 1000 new sets of estimates are
calculated

• Evaluate using same time points and sample sizes;
binomially sample

• Calculate empirical means, medians, SD, MAD



Simulation plots: r0 = 15, upper limit 5000



Simulation plots: r0 = 15, upper limit 5000
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Simulation Estimates: 3 Time Points

p̂ ĝ µ̂
True parameters 0.536 0.026 0.285

Authors 0.536 0.025 0.118
Optim 0.556 0.027 0.101

BBsolve 0.555 0.028 0.105

Table: Medians of parameter estimates from simulated data,
evaluated at three time points



Error Comparison: 3 Time Points

p̂ ĝ µ̂
Theoretical SE 0.015 0.039 0.477

SD: Authors 0.018 0.054 2.99
Optim 0.034 0.135 4.453

BBsolve 0.097 0.086 0.724
MAD: Authors 0.013 0.017 0.057

Optim 0.025 0.028 0.054
BBsolve 0.022 0.022 0.077

Table: Theoretical standard errors compared to standard deviations
and MADs from simulation estimates



Simulation Estimates: Full Data

p̂ ĝ µ̂
Median: True 0.534 0.014 0.610

Authors 0.533 0.012 0.419
Me 0.542 0.018 0.628

SD: Authors 0.022 0.040 405.59
Me 0.032 0.022 0.032

MAD: Authors 0.015 0.014 0.346
Me 0.036 0.016 0.021

Table: Comparison of preliminary results using full data when
r0 = 15. Upper limit of 2000 for the reserve

“Illustrates the difficulty in finding an appropriate estimator for
comparison”



Problems and ambiguities

• Possible numerical instability of solvers

• Simulation infeasible for large r0

• Uncertain of authors’ initial sizes, upper limits, extinction
events

• “No clear way to incorporate information that neither
dimension in any observed processes became extinct”



Concluding Remarks

• Accurate point estimates similar to other studies, using
“elegant” solution at low computational cost

• Enables estimation for large populations when simulation
approach infeasible

• Huge standard errors, questionable asymptotic
assumptions

• Sensitive numerical solutions

• Simplified model: biological limitations

• Significantly less efficient use of data than stochastic
integration methods
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