"Tensor Regression with Applications in Neuroimaging Data Analysis" Hua Zhou, Lexin Li, & Hongtu Zhu

Jennifer Kirk

May 30, 2013

1

# Outline

- Motivation
- Tensor Regression
- Simulation Results
- Discussion

# Scientific Motivation

- Mental health disorders are difficult to diagnose and treat
- Physiology of the brain is not well understood
- Neuroimaging can elucidate the brain's physiology
- Several types of neuroimaging, e.g. PET, MRI, fMRI



Brain Areas Associated with ADHD from fMRI Image Source: MIT Tech Review

# Statistical Motivation

- fMRI data: 4-D array (tensor) with spatial and temporal correlation
- Naive approach: use image as vector covariate
  - Lots of data  $\implies$  **lots of parameters** ( $\approx$  16 million)
  - Ignores spatial and temporal correlation
- New Method: Extend GLM to use fMRI image as one covariate observation in regression model



One fMRI Observation from One Subject

# Current Methods

- Voxel Based Methods
  - Analysis of each voxel as response variable
  - Assumes voxels independent-ignores spatial correlation
- Functional Data Methods
  - Collapses data into one parameter function
  - Commonly used for 2-D data, extension to 3-D data is complex
- Two-Stage Reduction Methods
  - Reduce the dimension of the data, possibly more than once, then model the reduced data
  - Theoretical properties are intractable and reduction maybe unrelated to response

# Special Case: Matrix Covariates

Recall:

- Outcome  $Y_i \sim$  univariate exponential family
- Vector covariate: z<sub>i</sub>
- $X_i$  is a  $p \times q$  matrix
- $\beta_1^{\mathsf{T}}$  is a  $1 \times p$  vector
- $\beta_2$  is a  $q \times 1$  vector

$$\begin{split} g(\mu_i) &= \alpha + \gamma^{\mathsf{T}} \mathsf{Z}_{\mathsf{i}} + \beta_1^{\mathsf{T}} \mathsf{X}_{\mathsf{i}} \beta_2 \\ &= \alpha + \gamma^{\mathsf{T}} \mathsf{Z}_{\mathsf{i}} + \langle (\beta_2 \odot \beta_1), \mathsf{vec}(\mathsf{X}_{\mathsf{i}}) \rangle \end{split}$$

where  $(\beta_2 \odot \beta_1)$  is a  $pq \times 1$  vector,  $\langle \cdot \rangle$  is the inner product, and  $vec(X_i)$  is the vector form of  $X_i$ 

#### **Tensor Notation**

- Order: the number of indices need to describe the tensor
- Kronecker Product: A is  $m \times p$ , B is  $n \times q$ :

$$\mathbf{A} \otimes \mathbf{B}_{mn \times pq} \equiv \begin{bmatrix} a_{1,1}\mathbf{B} & a_{1,2}\mathbf{B} & \cdots & a_{1,p}\mathbf{B} \\ a_{2,1}\mathbf{B} & a_{2,2}\mathbf{B} & \cdots & a_{2,p}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1}\mathbf{B} & a_{m,2}\mathbf{B} & \cdots & a_{m,p}\mathbf{B} \end{bmatrix}$$

• Khatri-Rao Product: A is  $m \times p$ , B is  $n \times p$ :

$$\mathbf{A} \odot \mathbf{B}_{mn \times p} \equiv [\mathbf{a}_{\cdot 1} \otimes \mathbf{b}_{\cdot 1} \cdots \mathbf{a}_{\cdot p} \otimes \mathbf{b}_{\cdot p}]$$

#### Rank-R Decomposition

If X is an I × J × K (order 3) tensor and A<sub>I×R</sub>, B<sub>J×R</sub>, C<sub>K×R</sub> are matrices then X = [[A, B, C]] means



If X is an I₁ × ... × ID (order D) tensor, then the rank-R decomposition is

$$\mathbf{X} = \llbracket \mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_D 
rbracket = \sum_{r=1}^R \mathbf{a}_1^{(r)} \circ \dots \circ \mathbf{a}_D^{(r)}$$

### Mode-d Matricization

► Denoted X<sub>(d)</sub>

• **X** is an  $I \times J \times K$  (order 3) tensor then **X**<sub>(1)</sub>:



In general, we "spread out" the tensor, keeping the d<sup>th</sup> dimension, to get a matrix

# Rank-R Generalized Linear Tensor Regression

- Outcome:  $Y_i \sim$  univariate exponential family
- Vector covariate: z<sub>i</sub>
- Tensor covariate:  $X_i$  (Order D:  $I_1 \times \ldots \times I_D$ )
- ► Assume tensor **B** has a rank-*R* decomposition

$$[\![\mathbf{B}_1,\ldots,\mathbf{B}_D]\!]$$

where  $\mathbf{B}_d$  is  $I_d \times R$  matrix

Link function:

$$g(\mu_i) = \alpha + \gamma^{\mathsf{T}} \mathsf{z}_i + \langle (\mathsf{B}_D \odot \ldots \odot \mathsf{B}_1) \mathbf{1}_R, \mathsf{vec}(\mathsf{X}_i) \rangle$$

#### Parameter Estimation

- Maximum Likelihood Estimation
- Estimation Algorithm
  - Set B<sup>(0)</sup> = 0 & estimate â<sup>(0)</sup>, î<sup>(0)</sup>
     Set α = â<sup>(n-1)</sup>, γ = î<sup>(n-1)</sup> & for each B<sub>d</sub>:
     Set B<sub>k</sub> = B<sup>(n)</sup><sub>k</sub>, k < d</li>
     Set B<sub>k</sub> = B<sup>(n-1)</sup><sub>k</sub>, k > d
     Estimate B<sub>d</sub>
     Estimate â<sup>(n)</sup> and î<sup>(n)</sup>, assuming B<sub>d</sub> = B<sup>(n)</sup><sub>d</sub> for all d
    - 4 Iterate 2–3 until the likelihood converges

$$g(\mu_i) = \alpha + \gamma^{\mathsf{T}} \mathsf{z}_i + \langle \mathsf{B}_d, \mathsf{X}_{\mathsf{i}(d)}(\mathsf{B}_D \odot \ldots \odot \mathsf{B}_{d+1} \odot \mathsf{B}_{d-1} \odot \ldots \odot \mathsf{B}_1) \rangle$$

# Simulation: Set up



Image Parameters

- 100 replications
- 1000 observations
- $\blacktriangleright \ \textbf{X}_i \sim \textit{N}_{20 \times 20}(\textbf{0},\textbf{I},\textbf{I})$
- ▶ **B**: Image Parameter
- $\blacktriangleright \ \mu_i = \langle \mathbf{B}, \mathbf{X_i} \rangle$

### Simulation: Unbiased



**True Parameters** 

Rank-1 Models

### Simulation: Unbiased



### Simulation: Unbiased



### Score and Information

Score  $\nabla \ell(\mathbf{B}_1, \dots, \mathbf{B}_d) = \frac{(y - \mu)}{\sigma^2} \underbrace{\mu'(\eta) [\mathbf{J}_1, \dots, \mathbf{J}_D]^{\mathsf{T}} \operatorname{vec}(\mathbf{X})}_{\frac{d\mu}{d\eta} \frac{d\eta}{d\beta}}$ 

Information

$$\mathbf{I}(\mathbf{B}_1,\ldots,\mathbf{B}_D) = \frac{[\mu'(\eta)]^2}{\sigma^2} [\mathbf{J}_1,\ldots,\mathbf{J}_D]^{\mathsf{T}} (\textit{vec}\mathbf{X})(\textit{vec}\mathbf{X})^{\mathsf{T}} [\mathbf{J}_1,\ldots,\mathbf{J}_D]$$

### Asymptotic Normality

For an interior point,  $\mathbf{B}_0 = [\![\mathbf{B}_{01}, \dots, \mathbf{B}_{0D}]\!]$  $\sqrt{n}[vec(\hat{\mathbf{B}}_{n1}, \dots, \hat{\mathbf{B}}_{nD}) - vec(\mathbf{B}_{01}, \dots, \mathbf{B}_{0D})]$ 

converges to

 $N(\mathbf{0}, \mathbf{I}^{-1}(\mathbf{B}_{01}, \dots, \mathbf{B}_{0D}))$ 

# Non-Identifiability

Two types of indeterminacy:

- Scaling & permutation indeterminacy
- ► Non-unique Rank-*R* decomposition

### Discussion

- Tensor parameter decomposition may not be interpretable
- Asymptotics require large sample size (n > p)
- Computation speed

# Summary

- Analysis of complex neuroimages is important for understanding brain physiology
- fMRI data is complex: 4-D array with spatial and temporal correlation
- Current analysis methods ignore one or more of these features
- Tensor regression extends GLM to array covariates
- Extend GLM framework to tensor covariates
- Classical theory results hold, but large sample size required