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Scientific Motivation

I Mental health disorders are
difficult to diagnose and treat

I Physiology of the brain is not well
understood

I Neuroimaging can elucidate the
brain’s physiology

I Several types of neuroimaging,
e.g. PET, MRI, fMRI

Brain Areas Associated
with ADHD from fMRI

Image Source: MIT Tech Review
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Statistical Motivation

I fMRI data: 4-D array (tensor) with spatial and temporal
correlation

I Naive approach: use image as vector covariate
I Lots of data =⇒ lots of parameters (≈ 16 million)
I Ignores spatial and temporal correlation

I New Method: Extend GLM to use fMRI image as one
covariate observation in regression model
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Current Methods

I Voxel Based Methods
I Analysis of each voxel as response variable
I Assumes voxels independent–ignores spatial correlation

I Functional Data Methods
I Collapses data into one parameter function
I Commonly used for 2-D data, extension to 3-D data is complex

I Two-Stage Reduction Methods
I Reduce the dimension of the data, possibly more than once,

then model the reduced data
I Theoretical properties are intractable and reduction maybe

unrelated to response
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Special Case: Matrix Covariates

Recall:

I Outcome Yi ∼ univariate exponential family

I Vector covariate: zi
I Xi is a p × q matrix

I βT1 is a 1× p vector

I β2 is a q × 1 vector

g(µi ) = α + γTZi + βT1 Xiβ2

= α + γTZi + 〈(β2 � β1), vec(Xi)〉

where (β2 � β1) is a pq × 1 vector, 〈·〉 is the inner product, and
vec(Xi) is the vector form of Xi
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Tensor Notation

I Order: the number of indices need to describe the tensor

I Kronecker Product: A is m × p, B is n × q:

A⊗ Bmn×pq ≡


a1,1B a1,2B · · · a1,pB
a2,1B a2,2B · · · a2,pB

...
...

. . .
...

am,1B am,2B · · · am,pB


I Khatri-Rao Product: A is m × p, B is n × p:

A� Bmn×p ≡ [a·1 ⊗ b·1 · · · a·p ⊗ b·p]
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Rank-R Decomposition

I If X is an I × J × K (order 3) tensor and AI×R , BJ×R , CK×R
are matrices then X = JA,B,CK means

I If X is an I1 × . . .× ID (order D) tensor, then the rank-R
decomposition is

X = JA1,A2, . . . ,ADK =
R∑

r=1

a
(r)
1 ◦ . . . ◦ a

(r)
D
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Mode-d Matricization

I Denoted X(d)

I X is an I × J × K (order 3) tensor then X(1):

I In general, we “spread out” the tensor, keeping the d th

dimension, to get a matrix

9



Rank-R Generalized Linear Tensor Regression

I Outcome: Yi ∼ univariate exponential family

I Vector covariate: zi
I Tensor covariate: Xi (Order D: I1 × . . .× ID)

I Assume tensor B has a rank-R decomposition

JB1, . . . ,BDK

where Bd is Id × R matrix

I Link function:

g(µi ) = α + γTzi + 〈(BD � . . .� B1)1R , vec(Xi)〉
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Parameter Estimation

I Maximum Likelihood Estimation
I Estimation Algorithm

1 Set B(0) = 0 & estimate α̂(0), γ̂(0)

2 Set α = α̂(n−1), γ = γ̂(n−1) & for each Bd :

I Set Bk = B̂(n)
k , k < d

I Set Bk = B̂(n−1)
k , k > d

I Estimate B̂d

3 Estimate α̂(n) and γ̂(n), assuming Bd = B̂
(n)
d for all d

4 Iterate 2–3 until the likelihood converges

g(µi ) = α + γTzi + 〈Bd ,Xi(d)(BD � . . .� Bd+1 � Bd−1 � . . .� B1)〉
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Simulation: Set up

I 100 replications

I 1000 observations

I Xi ∼ N20×20(0, I, I)

I B: Image Parameter

I µi = 〈B,Xi〉

Image Parameters
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Simulation: Unbiased

True Parameters Rank-1 Models
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Simulation: Unbiased

N = 10

N = 50

N = 25

N = 100

N = 40

Truth
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Simulation: Unbiased

N = 50

N = 1000

N = 100

N = 2000

N = 500

Truth
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Score and Information

I Score

∇`(B1, . . . ,Bd) =
(y − µ)

σ2
µ′(η)[J1, . . . , JD ]Tvec(X)︸ ︷︷ ︸

dµ
dη

dη
dβ

I Information

I(B1, . . . ,BD) =
[µ′(η)]2

σ2
[J1, . . . , JD ]T(vecX)(vecX)T[J1, . . . , JD ]
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Asymptotic Normality

For an interior point, B0 = JB01, . . . ,B0DK
√
n[vec(B̂n1, . . . , B̂nD)− vec(B01, . . . ,B0D)]

converges to

N(0, I−1(B01, . . . ,B0D))
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Non-Identifiability

Two types of indeterminacy:

I Scaling & permutation indeterminacy

I Non-unique Rank-R decomposition
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Discussion

I Tensor parameter decomposition may not be interpretable

I Asymptotics require large sample size (n > p)

I Computation speed
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Summary

I Analysis of complex neuroimages is important for
understanding brain physiology

I fMRI data is complex: 4-D array with spatial and temporal
correlation

I Current analysis methods ignore one or more of these features

I Tensor regression extends GLM to array covariates

I Extend GLM framework to tensor covariates

I Classical theory results hold, but large sample size required

20


