"Tensor Regression with Applications in Neuroimaging Data Analysis" Hua Zhou, Lexin Li, & Hongtu Zhu

Jennifer Kirk

May 30, 2013

Outline

- Motivation
- ► Tensor Regression
- ► Simulation Results
- Discussion

Scientific Motivation

- Mental health disorders are difficult to diagnose and treat
- Physiology of the brain is not well understood
- Neuroimaging can elucidate the brain's physiology
- Several types of neuroimaging, e.g. PET, MRI, fMRI

Brain Areas Associated with ADHD from fMRI Image Source: MIT Tech Review

Statistical Motivation

- fMRI data: 4-D array (tensor) with spatial and temporal correlation
- Naive approach: use image as vector covariate
 - ▶ Lots of data \implies lots of parameters (\approx 16 million)
 - Ignores spatial and temporal correlation
- New Method: Extend GLM to use fMRI image as one covariate observation in regression model

One fMRI Observation from One Subject

Current Methods

- Voxel Based Methods
 - Analysis of each voxel as response variable
 - Assumes voxels independent-ignores spatial correlation
- Functional Data Methods
 - Collapses data into one parameter function
 - Commonly used for 2-D data, extension to 3-D data is complex
- ► Two-Stage Reduction Methods
 - Reduce the dimension of the data, possibly more than once, then model the reduced data
 - Theoretical properties are intractable and reduction maybe unrelated to response

Special Case: Matrix Covariates

Recall:

- Outcome $Y_i \sim$ univariate exponential family
- Vector covariate: z_i
- $ightharpoonup X_i$ is a $p \times q$ matrix
- $\triangleright \beta_1^\mathsf{T}$ is a $1 \times p$ vector
- β_2 is a $q \times 1$ vector

$$g(\mu_i) = \alpha + \gamma^{\mathsf{T}} \mathbf{Z_i} + \beta_1^{\mathsf{T}} \mathbf{X_i} \beta_2$$

= $\alpha + \gamma^{\mathsf{T}} \mathbf{Z_i} + \langle (\beta_2 \odot \beta_1), \text{vec}(\mathbf{X_i}) \rangle$

where $(\beta_2 \odot \beta_1)$ is a $pq \times 1$ vector, $\langle \cdot \rangle$ is the inner product, and $\text{vec}(\mathbf{X_i})$ is the vector form of $\mathbf{X_i}$

Tensor Notation

- Order: the number of indices need to describe the tensor
- ▶ Kronecker Product: A is $m \times p$, B is $n \times q$:

$$\mathbf{A} \otimes \mathbf{B}_{mn \times pq} \equiv \begin{bmatrix} a_{1,1}\mathbf{B} & a_{1,2}\mathbf{B} & \cdots & a_{1,p}\mathbf{B} \\ a_{2,1}\mathbf{B} & a_{2,2}\mathbf{B} & \cdots & a_{2,p}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1}\mathbf{B} & a_{m,2}\mathbf{B} & \cdots & a_{m,p}\mathbf{B} \end{bmatrix}$$

▶ Khatri-Rao Product: A is $m \times p$, B is $n \times p$:

$$\textbf{A}\odot \textbf{B}_{\textit{mn}\times\textit{p}} \equiv [\textbf{a}_{\cdot 1}\otimes \textbf{b}_{\cdot 1}\cdots \textbf{a}_{\cdot\textit{p}}\otimes \textbf{b}_{\cdot\textit{p}}]$$

7

Rank-R Decomposition

▶ If **X** is an $I \times J \times K$ (order 3) tensor and $\mathbf{A}_{I \times R}$, $\mathbf{B}_{J \times R}$, $\mathbf{C}_{K \times R}$ are matrices then $\mathbf{X} = [\![\mathbf{A}, \mathbf{B}, \mathbf{C}]\!]$ means

▶ If **X** is an $I_1 \times ... \times I_D$ (order D) tensor, then the rank-R decomposition is

$$\mathbf{X} = \llbracket \mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_D \rrbracket = \sum_{r=1}^R \mathbf{a}_1^{(r)} \circ \dots \circ \mathbf{a}_D^{(r)}$$

8

Mode-*d* Matricization

- ▶ Denoted X_(d)
- **X** is an $I \times J \times K$ (order 3) tensor then $\mathbf{X}_{(1)}$:

In general, we "spread out" the tensor, keeping the dth dimension, to get a matrix

Rank-R Generalized Linear Tensor Regression

- ▶ Outcome: $Y_i \sim$ univariate exponential family
- Vector covariate: z:
- ▶ Tensor covariate: X_i (Order D: $I_1 \times ... \times I_D$)
- ► Assume tensor **B** has a rank-*R* decomposition

$$[\![\mathbf{B}_1,\ldots,\mathbf{B}_D]\!]$$

where \mathbf{B}_d is $I_d \times R$ matrix

Link function:

$$g(\mu_i) = \alpha + \gamma^{\mathsf{T}} \mathbf{z}_i + \langle (\mathbf{B}_D \odot \ldots \odot \mathbf{B}_1) \mathbf{1}_R, \text{vec}(\mathbf{X}_i) \rangle$$

Parameter Estimation

- Maximum Likelihood Estimation
- Estimation Algorithm
 - **1** Set $\mathbf{B}^{(0)} = 0$ & estimate $\hat{\alpha}^{(0)}$, $\hat{\gamma}^{(0)}$
 - 2 Set $\alpha = \hat{\alpha}^{(n-1)}$, $\gamma = \hat{\gamma}^{(n-1)}$ & for each \mathbf{B}_d :
 - ► Set $\mathbf{B}_k = \hat{\mathbf{B}}_k^{(n)}$, k < d
 - $\blacktriangleright \operatorname{Set} \mathbf{B}_k = \hat{\mathbf{B}}_k^{(n-1)}, \ k > d$
 - ightharpoonup Estimate $\hat{\mathbf{B}}_d$
 - **3** Estimate $\hat{\alpha}^{(n)}$ and $\hat{\gamma}^{(n)}$, assuming $\mathbf{B}_d = \hat{\mathbf{B}}_d^{(n)}$ for all d
 - 4 Iterate 2–3 until the likelihood converges

$$g(\mu_i) = \alpha + \gamma^\mathsf{T} \mathbf{z}_i + \langle \mathbf{B}_d, \mathbf{X}_{\mathsf{i}(d)} (\mathbf{B}_D \odot \ldots \odot \mathbf{B}_{d+1} \odot \mathbf{B}_{d-1} \odot \ldots \odot \mathbf{B}_1) \rangle$$

Simulation: Set up

- ▶ 100 replications
- ▶ 1000 observations
- $ightharpoonup X_{i} \sim N_{20\times20}(\mathbf{0},\mathbf{I},\mathbf{I})$
- ▶ **B**: Image Parameter
- $\blacktriangleright \ \mu_{\it i} = \langle {\bf B}, {\bf X_i} \rangle$

Image Parameters

Simulation: Unbiased

True Parameters Rank-1 Models

Simulation: Unbiased

Simulation: Unbiased

Score and Information

Score

$$\nabla \ell(\mathbf{B}_1, \dots, \mathbf{B}_d) = \frac{(y - \mu)}{\sigma^2} \underbrace{\mu'(\eta) [\mathbf{J}_1, \dots, \mathbf{J}_D]^\mathsf{T} \mathit{vec}(\mathbf{X})}_{\frac{d\mu}{d\eta} \frac{d\eta}{d\theta}}$$

Information

$$\mathbf{I}(\mathbf{B}_1, \dots, \mathbf{B}_D) = \frac{[\mu'(\eta)]^2}{\sigma^2} [\mathbf{J}_1, \dots, \mathbf{J}_D]^\mathsf{T} (\textit{vec} \mathbf{X}) (\textit{vec} \mathbf{X})^\mathsf{T} [\mathbf{J}_1, \dots, \mathbf{J}_D]$$

Asymptotic Normality

For an interior point,
$$\boldsymbol{B}_0 = [\![\boldsymbol{B}_{01}, \dots, \boldsymbol{B}_{0D}]\!]$$

$$\sqrt{n}[\textit{vec}(\hat{\mathbf{B}}_{n1},\ldots,\hat{\mathbf{B}}_{nD}) - \textit{vec}(\mathbf{B}_{01},\ldots,\mathbf{B}_{0D})]$$

converges to

$$N(\mathbf{0}, \mathbf{I}^{-1}(\mathbf{B}_{01}, \dots, \mathbf{B}_{0D}))$$

Non-Identifiability

Two types of indeterminacy:

- Scaling & permutation indeterminacy
- ▶ Non-unique Rank-*R* decomposition

Discussion

- ► Tensor parameter decomposition may not be interpretable
- Asymptotics require large sample size (n > p)
- Computation speed

Summary

- Analysis of complex neuroimages is important for understanding brain physiology
- fMRI data is complex: 4-D array with spatial and temporal correlation
- Current analysis methods ignore one or more of these features
- Tensor regression extends GLM to array covariates
- Extend GLM framework to tensor covariates
- Classical theory results hold, but large sample size required