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Model Selection in Bayesian Models

Bayes Factor:
» The formal solution

> Unstable with diffuse prior; undefined with improper priors

Cross-validation:
» Which model is most useful?

> Judge model by out-of-sample prediction

Posterior-Predictive approach:
> Does this model give data like what | observed?

» Simulate from posterior and compare to original data



Model Selection in Bayesian Models

Deviance Information Criterion (DIC)

DIC = D + pp ~ “Model Fit" + “Model Complexity”

» Proposed by Spiegelhalter et al. (2002)
» Theoretical foundations are controversial

o No clear generalization outside of exponential families
e Sensitive to parameterization

» "Experience with DIC to date suggests
that it works remarkably well” —Banerjee et al. (2004)

Can we develop a formal justification for DIC?



Loss Functions for Model Selection

Suppose we have a set of data Y = (Y1,...,Y})
Yi~p(16) 6~mn()

What is a suitable loss function for model comparison?

» Decision Theory suggests using scoring rules, which are
functions of p(+)

» Maximized when p(-) is true data generating density

» Deviance:
D(0) = —2log{p(Y|[0)}



Computing the Deviance

Ideally we have two data sets:
» Training data Z
> Test data Y
> p(Y16.2) = p(Y|6)
Plug-in Deviance:

LP(Y,Z) = —2log |p{Y[E(012)}

Expected Deviance:

L8(Y,Z) = —2/|og{p(Y\0)}ﬂ'(0]Z)d9



Penalized Loss

Typically, we only have one set of data Y. Can we use L(Y,Y)?

Yes, but we're being optimistic by using the data to both estimate
the posterior of 8 and as our test data

Add a penalty term to loss function:

L(Y, Y) + popt



Penalized Loss

We can split our loss function into contributions from each Y;

L(Y,Y) = Z L(Y:,Y)
i=1

Compare L(Y;,Y) to cross-validation loss L(Y;, Y_;) to estimate
how optimistic we are being.

Popty = B[L(Yi, Y ) = L(Y;, Y)|Y ]

The penalized loss function is now

LY, Y)+ > pop,

1



Penalized Loss and DIC

We will see that

DIC ~ LP(Y,Y) + Z Popt;
i

...but only when the effective number of parameters is small
relative to the number of observations.

When this is not true, DIC will under-penalize complex models



Penalized Loss and DIC in Disease Mapping
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Penalized Loss and DIC in Disease Mapping

Y; ~ Poisson(p;)  log(ui) = ao + i + 6; + log(E;)

Y; — lip cancer cases in county i

E; — expected counts of lip cancer in county i
ag — fixed effect

~; — uncorrelated random effects

d; — spatially correlated random effects

Model DIC Penalized Loss
Fixed Effect Only 1.0 1.1
Uncorrelated 43.5 570.5
Spatial 31 163.9
Uncorrelated + Spatial 31.6 166.4

Table: Estimated penalties for model complexity for Scottish lip cancer
data



Looking Ahead

Looking more closely at DIC ~ LP(Y,Y) + >, Popt;

Application to Scotland Lip Cancer Data

Can we apply penalized loss functions to other settings?
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