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Setting: Penalized Loss Functions

Goal: Develop a formal justification for DIC
Have a measure of Bayesian model fit

Approach: Use the deviance as loss function

D(0) = —2log{p(y|0)}

Estimators: Plug-in Deviance
LP(Y, Z) = —2log[p{Y[0(Z)}]
Expected Deviance
L(¥.2) = =2 [ log{p(Y10)}0(6]2) do

Note: Need to add optimism penalty for using data twice

L(Y,Y)+ popt  Where  pope, = E[L(Y;, Y_;) — L(Y;, Y)[Y_j]



Connection to DIC

Recall DIC (Speigelhalter et al., 2002):
DIC =D+ pp =D+ [D— D(0)]

In the current setting,

D=D() =L5(Y,Y) and D(0)=LP(Y,Y)

So
DIC =L%(Y,Y)+ pp
PD = Le(Y’ Y) - LP(Y’ Y)
Optimism penalties are missing!

Plummer is not the only person to notice this. For example, this
motivated Ando (2007) to develop BPIC



A Normal Example
The hierarchical linear model of Lindley and Smith (1972):
Y0 ~ N(A:10, Ci)
O]y ~ N(Ax¢, G)

Let V = Var(6|Y) and break Y into conditionally independent
subvectors Yi,...,Y,.

For plug-in deviance LP,

Popt; = Tr(C; P AL VAL + Tr(C A VoA
= Tr(H;) + Tr((I — H))"'H;)

where H; is the ith block of the hat matrix H.

Popt = Zpopt,- = TF(H) + ZTF((/ - Hi)ilHi)



A Normal Example

Spiegelhalter et al. showed pp = Tr(H), so
popt = Po + Y _ Tr((/ — H)) " H;)

This gives an expression for the penalized plug-in deviance

LP(Y,Y) + popt = D+ Y _Tr((I — H;) "' Hj).
For scalar outcomes, Tr((l — H)"'H) = ﬁ. If the dimension

of 0 is fixed, then ). =pp+0 (%) so

'1PD

1 1
LP(Y,Y) + popt = D+pD+O< >:D/C+O<n).



ANOVA Example
But what if dimension of 6 — 0o?

Consider the ANOVA model:

Yil0; ~ N(Q;,Ti_l)
0ily) ~ N(¥, A1)

with fixed precisions 7; and a flat prior on .

Letting p; = 7;/(X + 77) be the intraclass correlation,

pi(1 — pi)
PD; = pi + —=n
2}1:1 Pj



ANOVA Example

Case 1l: )\ —

ANOVA model — pooled model with mean v

pp — 1
DIC = " ri(Y; = Y)?* +2
LPCY,Y) + popt = »_7i(Yi— Y)? +2

Conceptually, Y_; contains more information about mean of Y},



ANOVA Example

Case 2: \—0

ANOVA model — fixed effects model with individual means

Pp — n
DIC — 2n
LP(Y, Y) + popt — 0

Conceptually, Y_; contains no information about mean of Y;

So when pp < n, DIC is a good approximation to penalized
plug-in deviance. But when pp/n is large, then DIC is not a good
approximation.



LP(Y,Y) in Exponential Families

In an exponential family, the log likelihood is given by

log{p(Yil6i)} = lyifi — b(0:)]/¢ — c(yi, ®)

With some work, we can show that
Popt; = 20 *Cov(0;, il Y-;) — po.(Y—i) + Elpp, (Y)Y -],
where p; = E[Y;|0;]. We can then estimate E[pp.(Y)|Y_;] by

pp;(Y) and get an estimator for the penalized plug in deviance:

LP(Y,Y) + popt = D+ 261 " Cov(0;, il Y—i) — pp,(Y—i).
i=1



Lip cancer in Scotland

SMR of Lip Cancer in Scotland
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Models for Lip cancer data

Y; ~ Poisson(p;)  log(ui) = ao + i + 6; + log(E;)

Y; — lip cancer cases in county i

E; — expected counts of lip cancer in county i
ag — fixed effect

~; — uncorrelated random effects

d; — spatially correlated random effects

Four models:
1. Fixed Effect only
2. Uncorrelated random effects
3. Spatial random effects
4. Uncorrelated and spatial random effects



Implementation

Posterior samples of the parameters are computed using MCMC

Computing popt requires n =56 MCMC runs (leaving one
observation out each time), which is feasible in this case, but not
practical in general.

Here we compute pop: exactly, but can use the approximation
Popt = Zi pr/(l - pDi)'



Lip Cancer Data

Results from Lip Cancer models:

Model D pPD DIC | popt LP+ popt
Fixed Effect Only 589.7 | 0.99 590.7 | 1.0 590.7
Uncorrelated 269.1 | 43.3 3124 | 5725 841.6
Spatial 266.3 | 31.0 297.3 | 163.9 430.2
Uncorrelated + Spatial | 265.9 | 31.6 297.5 | 166.4 432.3

» For all but the simplest model, pp does not well approximate

popt

» DIC is under-penalizing the more complex models



Summary

What we've seen:
» Plug-in deviance LP can be used to assess model fit

» Require a penalty term pop: to be added to LP

v

Popt has exact form in linear models and approximate form in
exponential families

When pp < n, DIC can be a good approximation to LP + popt

v

v

In spatial settings, DIC under-penalizes complex models

What's left:
» L€ in non-exponential families

» Mixture distribution example
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