Part 2: Penalized loss functions for Bayesian model comparison

Martyn Plummer, Biostatistics (2008)

Josh Keller

7 May 2013

Setting: Penalized Loss Functions

Goal: Develop a formal justification for DIC Have a measure of Bayesian model fit

Approach: Use the deviance as loss function

$$D(\theta) = -2\log\{p(y|\theta)\}$$

Estimators: Plug-in Deviance

$$L^{p}(Y,Z) = -2\log[p\{Y|\theta(Z)\}]$$

Expected Deviance

$$L^{e}(Y,Z) = -2 \int \log\{p(Y|\theta)\}p(\theta|Z) d\theta$$

Note: Need to add optimism penalty for using data twice

$$L(Y, Y) + p_{opt}$$
 where $p_{opt_i} = E[L(Y_i, \mathbf{Y}_{-i}) - L(Y_i, \mathbf{Y})|\mathbf{Y}_{-i}]$

Connection to DIC

Recall DIC (Speigelhalter et al., 2002):

$$DIC = \overline{D} + p_D = \overline{D} + [\overline{D} - D(\overline{\theta})]$$

In the current setting,

$$\overline{D} = \overline{D(\theta)} = L^e(Y, Y)$$
 and $D(\overline{\theta}) = L^p(Y, Y)$

So

$$DIC = L^{e}(Y, Y) + p_{D}$$
$$p_{D} = L^{e}(Y, Y) - L^{p}(Y, Y)$$

Optimism penalties are missing!

Plummer is not the only person to notice this. For example, this motivated Ando (2007) to develop BPIC

A Normal Example

The hierarchical linear model of Lindley and Smith (1972):

$$\mathbf{Y}|\theta \sim N(A_1\theta, C_1)$$

 $\theta|\psi \sim N(A_2\psi, C_2)$

Let $V = \text{Var}(\theta|\mathbf{Y})$ and break \mathbf{Y} into conditionally independent subvectors Y_1, \ldots, Y_n .

For plug-in deviance L^p ,

$$p_{opt_i} = \text{Tr}(C_{1i}^{-1}A_{1i} \bigvee A_{1i}^T) + \text{Tr}(C_{1i}^{-1}A_{1i} \bigvee_{-i} A_{1i}^T)$$

= \text{Tr}(H_i) + \text{Tr}((I - H_i)^{-1}H_i)

where H_i is the *i*th block of the hat matrix H.

$$p_{opt} = \sum_{i} p_{opt_i} = \mathsf{Tr}(\mathsf{H}) + \sum_{i} \mathsf{Tr}((I - H_i)^{-1} H_i)$$

A Normal Example

Spiegelhalter et al. showed $p_D = Tr(H)$, so

$$p_{opt} = p_D + \sum_i Tr((I - H_i)^{-1}H_i)$$

This gives an expression for the penalized plug-in deviance

$$L^p(Y,Y) + p_{opt} = \overline{D} + \sum_i \operatorname{Tr}((I - H_i)^{-1}H_i).$$

For scalar outcomes, $\text{Tr}((I-H_i)^{-1}H_i) = \frac{\rho_{D_i}}{1-\rho_{D_i}}$. If the dimension of θ is fixed, then $\sum_i \frac{\rho_{D_i}}{1-\rho_{D_i}} = \rho_D + O\left(\frac{1}{n}\right)$, so

$$L^{p}(Y,Y) + p_{opt} = \overline{D} + p_{D} + O\left(\frac{1}{n}\right) = DIC + O\left(\frac{1}{n}\right).$$

ANOVA Example

But what if dimension of $\theta \to \infty$?

Consider the ANOVA model:

$$Y_i | \theta_i \sim N(\theta_i, \tau_i^{-1})$$

 $\theta_i | \psi \sim N(\psi, \lambda^{-1})$

with fixed precisions τ_i and a flat prior on ψ .

Letting $\rho_i = \tau_i/(\lambda + \tau_i)$ be the intraclass correlation,

$$p_{D_i} = \rho_i + \frac{\rho_i(1-\rho_i)}{\sum_{j=1}^n \rho_j}.$$

ANOVA Example

Case 1: $\lambda \to \infty$

ANOVA model ightarrow pooled model with mean ψ

$$p_D o 1$$
 $DIC o \sum_i au_i (Y_i - \overline{Y})^2 + 2$
 $L^p(Y,Y) + p_{opt} o \sum_i au_i (Y_i - \overline{Y})^2 + 2$

Conceptually, \mathbf{Y}_{-i} contains more information about mean of Y_i ,

ANOVA Example

Case 2: $\lambda \to 0$

ANOVA model \rightarrow fixed effects model with individual means

$$p_D
ightarrow n$$
 $DIC
ightarrow 2n$ $L^p(Y,Y)+p_{opt}
ightarrow \infty$

Conceptually, \mathbf{Y}_{-i} contains no information about mean of Y_i

So when $p_D \ll n$, DIC is a good approximation to penalized plug-in deviance. But when p_D/n is large, then DIC is not a good approximation.

$L^p(Y, Y)$ in Exponential Families

In an exponential family, the log likelihood is given by

$$\log\{p(Y_i|\theta_i)\} = [y_i\theta_i - b(\theta_i)]/\phi - c(y_i,\phi)$$

With some work, we can show that

$$p_{opt_i} = 2\phi^{-1}\operatorname{Cov}(\theta_i, \mu_i|\mathbf{Y}_{-i}) - p_{D_i}(\mathbf{Y}_{-i}) + \operatorname{E}[p_{D_i}(\mathbf{Y})|\mathbf{Y}_{-i}],$$

where $\mu_i = E[Y_i|\theta_i]$. We can then estimate $E[p_{D_i}(\mathbf{Y})|\mathbf{Y}_{-i}]$ by $p_{D_i}(\mathbf{Y})$ and get an estimator for the penalized plug in deviance:

$$L^{p}(Y,Y) + \hat{p}_{opt} = \overline{D} + 2\phi^{-1} \sum_{i=1}^{n} \operatorname{Cov}(\theta_{i}, \mu_{i} | \mathbf{Y}_{-i}) - p_{D_{i}}(\mathbf{Y}_{-i}).$$

Lip cancer in Scotland

SMR of Lip Cancer in Scotland

Models for Lip cancer data

$$Y_i \sim \mathsf{Poisson}(\mu_i) \quad \log(\mu_i) = \alpha_0 + \gamma_i + \delta_i + \log(E_i)$$

 Y_i – lip cancer cases in county i

 E_i – expected counts of lip cancer in county i

 α_0 – fixed effect

 γ_i – uncorrelated random effects

 δ_i – spatially correlated random effects

Four models:

- 1. Fixed Effect only
- 2. Uncorrelated random effects
- 3. Spatial random effects
- 4. Uncorrelated and spatial random effects

Implementation

Posterior samples of the parameters are computed using MCMC

Computing \hat{p}_{opt} requires n=56 MCMC runs (leaving one observation out each time), which is feasible in this case, but not practical in general.

Here we compute \hat{p}_{opt} exactly, but can use the approximation $\hat{p}_{opt} \approx \sum_i p_{D_i}/(1-p_{D_i})$.

Lip Cancer Data

Results from Lip Cancer models:

Model	\overline{D}	p_D	DIC	\hat{p}_{opt}	$L^p + \hat{p}_{opt}$
Fixed Effect Only	589.7	0.99	590.7	1.0	590.7
Uncorrelated	269.1	43.3	312.4	572.5	841.6
Spatial	266.3	31.0	297.3	163.9	430.2
${\sf Uncorrelated} + {\sf Spatial}$	265.9	31.6	297.5	166.4	432.3

- ► For all but the simplest model, p_D does not well approximate p_{opt}
- ▶ DIC is under-penalizing the more complex models

Summary

What we've seen:

- ▶ Plug-in deviance L^p can be used to assess model fit
- ▶ Require a penalty term p_{opt} to be added to L^p
- p_{opt} has exact form in linear models and approximate form in exponential families
- ▶ When $p_D \ll n$, DIC can be a good approximation to $L^p + p_{opt}$
- ▶ In spatial settings, *DIC* under-penalizes complex models

What's left:

- L^e in non-exponential families
- Mixture distribution example

References

Plummer, M. (2008) Penalized loss functions for Bayesian model comparison. *Biostatistics*, **9**, 523-539.

Spiegelhalter, D., Best, N., Carlin, B., and van der Linde, A. (2002) Bayesian measures of model complexity and fit (with discussion). *JRSSB* **64**, 583-639.