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Setting: Penalized Loss Functions

Goal: Develop a formal justification for DIC
Have a measure of Bayesian model fit

Approach: Use the deviance as loss function

D(θ) = −2 log{p(y |θ)}

Estimators: Plug-in Deviance

Lp(Y ,Z ) = −2 log[p{Y |θ(Z )}]

Expected Deviance

Le(Y ,Z ) = −2

∫
log{p(Y |θ)}p(θ|Z ) dθ

Note: Need to add optimism penalty for using data twice

L(Y ,Y ) + popt where popti = E[L(Yi ,Y−i )− L(Yi ,Y)|Y−i ]



Connection to DIC

Recall DIC (Speigelhalter et al., 2002):

DIC = D + pD = D + [D − D(θ)]

In the current setting,

D = D(θ) = Le(Y ,Y ) and D(θ) = Lp(Y ,Y )

So
DIC = Le(Y ,Y ) + pD

pD = Le(Y ,Y )− Lp(Y ,Y )

Optimism penalties are missing!

Plummer is not the only person to notice this. For example, this
motivated Ando (2007) to develop BPIC



A Normal Example

The hierarchical linear model of Lindley and Smith (1972):

Y|θ ∼ N(A1θ,C1)

θ|ψ ∼ N(A2ψ,C2)

Let V = Var(θ|Y) and break Y into conditionally independent
subvectors Y1, . . . ,Yn.

For plug-in deviance Lp,

popti = Tr(C−1
1i A1iVAT

1i ) + Tr(C−1
1i A1iV−iA

T
1i )

= Tr(Hi ) + Tr((I − Hi )
−1Hi )

where Hi is the ith block of the hat matrix H.

popt =
∑
i

popti = Tr(H) +
∑
i

Tr((I − Hi )
−1Hi )



A Normal Example

Spiegelhalter et al. showed pD = Tr(H), so

popt = pD +
∑
i

Tr((I − Hi )
−1Hi )

This gives an expression for the penalized plug-in deviance

Lp(Y ,Y ) + popt = D +
∑
i

Tr((I − Hi )
−1Hi ).

For scalar outcomes, Tr((I − Hi )
−1Hi ) =

pDi
1−pDi

. If the dimension

of θ is fixed, then
∑

i
pDi

1−pDi
= pD + O

(
1
n

)
, so

Lp(Y ,Y ) + popt = D + pD + O

(
1

n

)
= DIC + O

(
1

n

)
.



ANOVA Example

But what if dimension of θ →∞?

Consider the ANOVA model:

Yi |θi ∼ N(θi , τ
−1
i )

θi |ψ ∼ N(ψ, λ−1)

with fixed precisions τi and a flat prior on ψ.

Letting ρi = τi/(λ+ τi ) be the intraclass correlation,

pDi
= ρi +

ρi (1− ρi )∑n
j=1 ρj

.



ANOVA Example

Case 1: λ→∞

ANOVA model → pooled model with mean ψ

pD → 1

DIC →
∑
i

τi (Yi − Y )2 + 2

Lp(Y ,Y ) + popt →
∑
i

τi (Yi − Y )2 + 2

Conceptually, Y−i contains more information about mean of Yi ,



ANOVA Example

Case 2: λ→ 0

ANOVA model → fixed effects model with individual means

pD → n

DIC → 2n

Lp(Y ,Y ) + popt →∞

Conceptually, Y−i contains no information about mean of Yi

So when pD � n, DIC is a good approximation to penalized
plug-in deviance. But when pD/n is large, then DIC is not a good
approximation.



Lp(Y ,Y ) in Exponential Families

In an exponential family, the log likelihood is given by

log{p(Yi |θi )} = [yiθi − b(θi )]/φ− c(yi , φ)

With some work, we can show that

popti = 2φ−1Cov(θi , µi |Y−i )− pDi
(Y−i ) + E[pDi

(Y)|Y−i ],

where µi = E [Yi |θi ]. We can then estimate E[pDi
(Y)|Y−i ] by

pDi
(Y) and get an estimator for the penalized plug in deviance:

Lp(Y ,Y ) + p̂opt = D + 2φ−1
n∑

i=1

Cov(θi , µi |Y−i )− pDi
(Y−i ).



Lip cancer in Scotland
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Models for Lip cancer data

Yi ∼ Poisson(µi ) log(µi ) = α0 + γi + δi + log(Ei )

Yi – lip cancer cases in county i
Ei – expected counts of lip cancer in county i
α0 – fixed effect
γi – uncorrelated random effects
δi – spatially correlated random effects

Four models:

1. Fixed Effect only

2. Uncorrelated random effects

3. Spatial random effects

4. Uncorrelated and spatial random effects



Implementation

Posterior samples of the parameters are computed using MCMC

Computing p̂opt requires n = 56 MCMC runs (leaving one
observation out each time), which is feasible in this case, but not
practical in general.

Here we compute p̂opt exactly, but can use the approximation
p̂opt ≈

∑
i pDi

/(1− pDi
).



Lip Cancer Data

Results from Lip Cancer models:

Model D pD DIC p̂opt Lp + p̂opt
Fixed Effect Only 589.7 0.99 590.7 1.0 590.7
Uncorrelated 269.1 43.3 312.4 572.5 841.6
Spatial 266.3 31.0 297.3 163.9 430.2
Uncorrelated + Spatial 265.9 31.6 297.5 166.4 432.3

I For all but the simplest model, pD does not well approximate
popt

I DIC is under-penalizing the more complex models



Summary

What we’ve seen:

I Plug-in deviance Lp can be used to assess model fit

I Require a penalty term popt to be added to Lp

I popt has exact form in linear models and approximate form in
exponential families

I When pD � n, DIC can be a good approximation to Lp + popt
I In spatial settings, DIC under-penalizes complex models

What’s left:

I Le in non-exponential families

I Mixture distribution example
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