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Model Selection in Bayesian Models

Bayes Factor:

I The formal solution

I Unstable with diffuse prior; undefined with improper priors

Posterior-Predictive approach:

I Does this model give data like what I observed?

I Simulate from posterior and compare to original data

Cross-validation:

I Which model is most useful?

I Judge model by out-of-sample prediction



Model Selection in Bayesian Models

Deviance Information Criterion (DIC)

DIC = D + pD = Deviance + “Effective number of parameters”

I Proposed by Spiegelhalter et al. (2002)
I Theoretical foundations are controversial

No clear generalization outside of exponential families
Doesn’t work for mixture distributions
Sensitive to parameterization

Can we develop a formal justification for DIC?



Loss Functions for Model Selection

Plummer’s (2008) approach:

I Use cross-validation argument
I Estimate out-of-sample model fit

Training data Z
Test data Y

I Deviance as loss-function: D(θ) = −2 log{p(Y|θ)}
I Estimators:

Plug-in Deviance

Lp(Y ,Z ) = −2 log[p{Y |θ(Z )}]

Expected Deviance

Le(Y ,Z ) = −2

∫
log{p(Y |θ)}p(θ|Z ) dθ

I Similar to theoretical argument for AIC



Penalized Loss

Typically, we only have one set of data Y. Can we use L(Y,Y)?

Yes, but we’re being optimistic by using the data to both estimate
the posterior of θ and as our test data

Add an optimism penalty term to loss function:

L̃(Y,Y) = L(Y,Y) + popt



Penalized Loss

We can split our loss function into contributions from each Yi

L(Y,Y) =
n∑

i=1

L(Yi ,Y)

Compare L(Yi ,Y) to cross-validation loss L(Yi ,Y−i ) to estimate
how optimistic we are being.

popti = E
[
L(Yi ,Y−i )− L(Yi ,Y)

∣∣∣Y−i]
The penalized loss function is now

L̃(Y,Y) = L(Y,Y) +
∑
i

popti

Note: E[L̃(Yi ,Y)|Y−i ] = E[L(Yi ,Y−i )|Y−i ].



DIC as an approximation to L̃p

Consider the hierarchical linear model of Lindley and Smith (1972):

Y|θ ∼ N(A1θ,C1)

θ|ψ ∼ N(A2ψ,C2)

with A1,A2,C1,C2 known matrices.

We can write the optimism penalty popt in terms of the entries in
the hat matrix H = C−11 A1Var(θ|Y)AT

1 .

If the dimension of θ is fixed, then

L̃p(Y ,Y ) = Lp(Y ,Y ) + popt = DIC + O

(
1

n

)
.



DIC as an approximation to L̃p

But what if dimension of θ →∞?

Consider a simplified hierarchical model:

Yi |θi ∼ N(θi , τ
−1
i )

θi |ψ ∼ N(ψ, λ−1)

with fixed precisions τi and a flat prior on ψ.

Two cases:

I λ→∞
I λ→ 0



DIC as an approximation to L̃p

Case 1: λ→∞

Hierarchical model → pooled model with mean ψ for all Yi

pD → 1

DIC →
∑
i

τi (Yi − Y )2 + 2

L̃p(Y ,Y )→
∑
i

τi (Yi − Y )2 + 2

Intuition: Y−i contains much information about mean of Yi ,



DIC as an approximation to L̃p

Case 2: λ→ 0

Hierarchical model → fixed effects model with different mean for
each Yi

pD → n

DIC → 2n

L̃p(Y ,Y )→∞

Intuition: Y−i contains no information about mean of Yi

So when pD � n, DIC is a good approximation to penalized
plug-in deviance. But when pD/n is large, then DIC is not a good
approximation.



L̃p(Y ,Y ) in Exponential Families

Consider an exponential family distribution, with density

p(Yi |θi )} = exp{[yiθi − b(θi )]/φ}c(yi , φ)

Let µi = E [yi |θi ]. With some work, we can show that

L̃p(Y ,Y ) = D(θ) +
n∑

i=1

E[pDi
(Y)|Y−i ] + 2φ−1Cov(θi , µi |Y−i )− pDi

(Y−i )

≈ D +
n∑

i=1

[
2φ−1Cov(θi , µi |Y−i )− pDi

(Y−i )
]
,

:= D + ropt .

Recall DIC = D + pD . Let’s compare pD and ropt .



Lip cancer in Scotland

0 200 400 600

60
0

70
0

80
0

90
0

10
00

11
00

12
00

SMR of Lip Cancer in Scotland

0
0.

71
1.

4
2.

1
2.

9
3.

6
4.

3
5

5.
7

6.
4



Models for Lip cancer data

Yi ∼ Poisson(µi ) log(µi ) = α0 + γi + δi + log(Ei )

Yi – lip cancer cases in county i
Ei – expected counts of lip cancer in county i
α0 – fixed effect
γi – uncorrelated random effects
δi – spatial (ICAR) random effects

Four models:

1. Fixed Effect only

2. Uncorrelated random effects

3. Spatial random effects

4. Uncorrelated and spatial random effects



Implementation

Posterior samples of the parameters are computed using MCMC

Improper flat prior on α. Gamma(0.5, 0.0005) priors on precisions
for γi and δi .

Computing ropt requires n = 56 MCMC runs (leaving one
observation out each time), which is feasible in this case, but not
practical in general.

Here we compute ropt directly, and using two approximations that
require only one chain:

A1: r̂opt ≈
∑

i pDi
/(1− pDi

).

A2: Make replicate random effect draws from θ|Y



Lip Cancer Data

Results from Lip Cancer models:

Model pD ropt A1 A2

Fixed Effect Only 1.0 1.1 1.0
Uncorrelated 43.4 570.8 294.7 568.2
Spatial 30.9 162.5 150.0 151.6
Uncorrelated + Spatial 30.8 165.0 110.9 153.0

I For all but the simplest model, pD does not well approximate
ropt

I DIC is under-penalizing the more complex models



Penalized loss for Mixture Distributions

I Lack of formalization outside of exponential families,
specifically mixture distributions, was a limiting aspect of DIC.

I L̃p can be difficult to compute outside of exponential families

I Both use θ, which is problematic for mixtures

⇒ Now consider L̃e(Y,Y).



Penalized loss for Mixture Distributions

Let J(p, q) = KL(p, q) + KL(q, p) be the undirected divergence
between distributions p and q.

Define
Ji (θ,θ

′) = J
(
p(Yi |θ), p(Yi |θ′)

)
Then the optimism for expected deviance is

popti =

∫ ∫
Ji (θ,θ

′)p(θ|Y−i )p(θ′|Y−i )dθ′dθ

Estimate popti using MCMC with two parallel chains.

Instead of running 2n chains with an observation left out, just run
2 chains on full data and use importance sampling to make draws.



Mixture Example

I Ratio of two urinary metabolites after administration of
caffeine

I Originally from Richardson and Green (1997)

Urinary Enzyme Data
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Mixture Example

p(yi |π,µ,σ) =
G∑

g=1

πgφ

(
Yi − µg
σg

)

I G ∈ {1, 2, 3, 4, 5}
I π ∼ Dirichlet(5, . . . , 5)

I µg ∼ N(12(Y(1) + Y(n)),R
2)

I σ−2g ∼ Gamma(2, β)

I β ∼ Gamma(0.2, 10/R2)

I R = Y(n) − Y(1)

Requires two simultaneous MCMC runs



Mixture Example Results

# of Comps Le p̂opt L̃e

1 720.5 3.9 724.4
2 596.1 9.2 605.3
3 587.3 12.9 600.3
4 586.7 13.3 600.0
5 586.5 13.1 599.7

Urinary Enzyme Data
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Conclusions and Critiques

I Establishes penalized deviance as a theoretically valid model
comparison approach

I Provides theoretical argument for DIC as an approximation to
penalized deviance

I Demonstrates situations in which DIC is a bad approximation

I Doesn’t solve the parameterization problem with the plug-in
deviance

I Not clear that L̃p and L̃e , as implemented, are practical

Requires either n MCMC runs or uses an approximation
For plug-in deviance, approximations for popt are better than
DIC but aren’t always good
For expected deviance, p̂opt is easily obtained in JAGS, but the
importance sampling approximation may not always be valid

Easily obtained via software 6= Appropriate to use
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