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Motivation
Area and time-specific disease rates

Area and time-specific disease rates are of great interest for
health care and policy purposes

Facilitate effective allocation of resources and targeted
interventions

Sample size often too small at granular space-time scale for
reliable estimates

Bayesian approach to ‘borrow strength’ over space and time
to improve reliability

2



Motivation
Ohio Lung Cancer Example
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Background
Previous approaches

Previous works have used a Hierarchical Bayesian framework to
expand purely spatial models by [Besag et al., 1991] to a space ×
time framework.

[Waller et al., 1997] - Spatial model for each time point

No spatial main effects

[Bernardinelli et al., 1995] - Area-specific intercept and
temporal trends

All temporal trends assumed linear
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Background
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Background
[Knorr-Held and Besag, 1998]

The Main Effect Model:

nit - persons at risk in county i (i = 1, ..., n) at time t
(t = 1, ...,T )

yit - cases or deaths in county i at time t

yit ∼ Bin(nit , πit)

ηit = log
(

πit
1−πit

)
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Background
[Knorr-Held and Besag, 1998]

The Main Effect Model:

ηit = µ+ αt + γt + θi + φi

µ - overall risk level

αt - temporally structured effect of time t

γt - independent effect of time t

θi - spatially structured effect of county i

φi - independent effect of county i
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Background
[Knorr-Held and Besag, 1998]

Prior Specifications:

ηit = µ+ αt + γt + θi + φi

µ - flat non-informative

p(α|λα) ∝ exp
(
−λα

2

∑T
t=2(αt − αt−1)2

)
p(γ|λγ) ∝ exp

(
−λγ

2

∑T
t=1 γ

2
t

)
p(θ|λθ) ∝ exp

(
−λθ

2

∑
i∼j(θi − θj)2

)
p(φ|λφ) ∝ exp

(
−λφ

2

∑n
i=1 φ

2
i

)
With precision matrix λK where the structure of K depends on the
assumptions about the prior interrelationship between parameters.
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Background
[Knorr-Held and Besag, 1998]

ηit = µ+ αt + γt + θi + φi
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Background
[Knorr-Held and Besag, 1998]

Limitations

Combines temporal and spatial main effects additively

Does not allow for space × time interactions
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[Knorr-Held, 2000]
The Model

Address the situation where the disease variation cannot be
separated into temporal and spatial main effects and
spatio-temporal interactions become and important feature.

ηit = µ+ αt + γt + θi + φi + δit

µ - overall risk level

αt - temporally structured effect of time t

γt - independent effect of time t

θi - spatially structured effect of county i

φi - independent effect of county i

δit - space × time interaction
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[Knorr-Held, 2000]
Four Space × Time Interactions

Type I Independent - Independent multivariate gaussian prior

p(δ|λδ) ∝ exp
(
−λδ

2

∑n
i=1

∑T
t=1 δ

2
it

)
with Kδ = Kγ ⊗ Kφ

(rank nT )
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[Knorr-Held, 2000]
Four Space × Time Interactions

Type II Temporal trends differ by area - Random walk prior

p(δ|λδ) ∝ exp
(
−λδ

2

∑n
i=1

∑T
t=2(δit − δi ,t−1)2

)
with

Kδ = Kα ⊗ Kφ (rank n(T − 1))
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[Knorr-Held, 2000]
Four Space × Time Interactions

Type III Spatial trends differ over time - Intrinsic autoregression prior

p(δ|λδ) ∝ exp
(
−λδ

2

∑
i∼j

∑T
t=1(δit − δjt)2

)
with

Kδ = Kγ ⊗ Kθ (rank (n − 1)T )
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[Knorr-Held, 2000]
Four Space × Time Interactions

Type IV Spatio-temporal interaction - conditional depends on first and
second order neighbors

p(δ|λδ) ∝ exp
(
−λδ

2

∑
i∼j

∑T
t=2(δit − δjt − δi ,t−1 + δj ,t−1)2

)
with Kδ = Kα ⊗ Kθ (rank (n − 1)(T − 1))
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[Knorr-Held, 2000]
Evaluation

Used Markov chain Monte Carlo (using univariate Metropolis
steps) to sample from the posterior distribution of :

ηit = µ+ αt + γt + θi + φi (one model)

ηit = µ+ αt + γt + θi + φi + δit (one model with four
variations)

to the Ohio Lung Cancer data and compared posterior deviance.
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The End

Questions?
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