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Motivation
Ohio Lung Cancer Example
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The Model
Stage 1

Address the situation where the disease variation cannot be
separated into temporal and spatial main effects and
spatio-temporal interactions become and important feature.

ηit = µ+ αt + γt + θi + φi + δit

µ - overall risk level

αt - temporally structured effect of time t

γt - independent effect of time t

θi - spatially structured effect of county i

φi - independent effect of county i

δit - space × time interaction
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The Model
Stage 2 - Independent Priors

Prior for γ :

p(γ|λγ) ∝ exp
(
−λγ

2

∑T
t=1 γ

2
t

)
= exp

(
−λγ

2 γ
TKγγ

)
where Kγ = ITxT .

Prior for φ:

p(φ|λφ) ∝ exp

(
−λφ

2

n∑
i=1

φ2t

)
= exp

(
−λφ

2 φ
TKφφ

)
where Kφ = Inxn.
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The Model
Stage 2 - First Order Random Walk

αt+1 − αt ∼ N (0, λ−1
α ), t = 1, . . . ,T − 1

p(α|λα) ∝ λ
(T−1)/2
α exp

(
−λα

2
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2

)
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α exp

(
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)
Where,

Kα =


1 −1
−1 2 1

. . .
. . .

. . .

−1 2 −1
−1 1


and has rank T − 1.
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The Model
Stage 2 - First Order Random Walk

With

p(α|λα) ∝ λ(T−1)/2
α exp

(
−λα

2
αTKαα

)
we have that

αt |α−t , λα ∼ N
(

1

2
(αt−1 + αt+1), 1/(2λα)

)
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The Model
Stage 2 - ICAR Prior

θi − θj ∼ N (0, λ−1
θ ), for neighbors i and j

p(θ|λθ) ∝ λ
(n−1)/2
θ exp

(
−λθ

2

∑
i∼j

(θi − αj)
2

)
= λ

(n−1)/2
θ exp

(
−λθ

2 θ
TKθθ

)
Where our precision matrix has elements:

Kθ,ij =


ni i = j
−1 i ∼ j

0 otherwise

and has rank n − 1.
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The Model
Stage 2 - ICAR Prior

An example Kθ =


2 −1 0 −1
−1 2 0 −1
0 0 1 −1
−1 −1 −1 3
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The Model
Stage 2 - ICAR Prior

With

p(θ|λθ) ∝ λ(n−1)/2
θ exp

(
−λθ

2
αTKθθ

)
we have that

θi |θ−i , λθ ∼ N

 1

ni

∑
j :j∼i

θj ,
1

niλθ
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The Model
Stage 2 - iid prior for δ

Type I Independent - Independent multivariate gaussian prior

p(δ|λδ) ∝ exp

(
−λδ

2

n∑
i=1

T∑
t=1

(δit)
2

)
= exp

(
−λδ

2 δ
TKδδ

)
Where Kδ = Kγ ⊗ Kφ = InT×nT .
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The Model
Stage 2 - Random Walk prior for δ

Type II Temporal trends differ by area - first order random walk prior

p(δ|λδ) ∝ exp

(
−λδ

2

n∑
i=1

T−1∑
t=1

(δit − δi ,t−1)2
)

= exp
(
−λδ

2 δ
TKδδ

)
Where Kδ = Kα ⊗ Kφ (rank n(T − 1)).
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The Model
Stage 2 - ICAR prior for δ

Type III Spatial trends differ over time - Intrinsic autoregression prior

p(δ|λδ) ∝ exp

(
−λδ

2

∑
i∼j

T∑
t=1

(δit − δjt)2
)

= exp
(
−λδ

2 δ
TKδδ

)
Where Kδ = Kγ ⊗ Kθ (rank (n − 1)T ).
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The Model
Stage 2 - Space-Time prior for δ

Type IV Spatio-temporal interaction - conditional depends on first and
second order neighbors

p(δ|λδ) ∝ exp
(
−λδ

2

∑
i∼j

∑T
t=2(δit − δjt − δi ,t−1 + δj ,t−1)2

)
= exp

(
−λδ

2 δ
TKδδ

)
Where Kδ = Kα ⊗ Kθ (rank (n − 1)(T − 1)).
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The Model
Implementation Difficulties

Overall level can be absorbed by both θ and α in main effects
model and interaction model I.

recenter θ and α after each iteration to have mean zero

omit µ and recenter θ or α

Additional constraints for interaction models II, III, and IV:

II recenter δit row-wise (across time)

III recenter δit column-wise (over space)

IV recenter δit row-wise and column-wise
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Example
Ohio Lung Cancer without smoothing
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Example
Ohio Lung Cancer with main effects smoothing
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Example
Ohio Lung Cancer with main effects + space-time interaction smoothing
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What’s next?

Currently coding all 5 models on a very small (5 nodes and 5 time
points) graph with

Winbugs

INLA

MCMC

To do

‘tuning in an automated fashion’ for univariate Metropolis
updating

block updating
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The End

Questions?
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