
Bayesian modeling of inseparable space-time
variation in disease risk

Leonhard Knorr-Held

Laina Mercer

Department of Statistics
UW

May 23, 2013



Motivation
Area and time-specific disease rates

Area and time-specific disease rates are of great interest for
health care and policy purposes

Facilitate effective allocation of resources and targeted
interventions

Sample size often too small at granular space-time scale for
reliable estimates

Bayesian approach to ‘borrow strength’ over space and time
to improve reliability

2



Motivation
Ohio Lung Cancer Example

[0,1.5)
[1.5,3.01)
[3.01,4.51)
[4.51,6.01]

Lung Cancer Mortality Rates 1972

3



Motivation
Ohio Lung Cancer Example

0
1

2
3

4
5

6

Ohio Lung cancer mortality by county 1968−1988 ages 55−64

Year

R
aw

 L
un

g 
C

an
ce

r 
D

ea
th

s 
pe

r 
10

00

1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988

4



Background
Previous approaches

Previous works have used a Hierarchical Bayesian framework to
expand purely spatial models by Besag, York, and Mollie (1991) to
a space × time framework.

Bernardinelli et al. (1995)

Area-specific intercept and temporal trends
All temporal trends assumed linear

Waller et al. (1997)

Spatial model for each time point
No spatial main effects

Knorr-Held and Besag (1998)

Included spatial and temporal main effects
Does not allow for space × time interactions
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The Model
The Set Up

Address the situation where the disease variation cannot be
separated into temporal and spatial main effects and
spatio-temporal interactions become and important feature.

nit - persons at risk in county i at time t.

yit - cases or deaths in county i at time t

yit |πit ∼ Bin(nit , πit)

ηit = log
(

πit
1−πit

)
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The Model
Stage 1

ηit = µ+ αt + γt + θi + φi + δit

µ - overall risk level

αt - temporally structured effect of time t

γt - independent effect of time t

θi - spatially structured effect of county i

φi - independent effect of county i

δit - space × time interaction
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The Model
Stage 2 - Exchangeable Effects

The exchangeable effects γ (for time) and φ (for space) we are
assigned multivariate Gaussian priors with mean zero and precision
matrix λK :

p(γ|λγ) ∼ N
(

0, 1
λγ

K−1
γ

)

p(φ|λφ) ∼ N
(

0, 1
λφ

K−1
φ

)
where Kγ = ITxT and Kφ = Ikxk .
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The Model
Stage 2 - First Order Random Walk

Temporally structured effect of time αt is assigned a random walk.

αt |α−t , λα ∼ N
(

1

2
(αt−1 + αt+1), 1/(2λα)

)
Also represented as p(α|λα) ∝ exp

(
−λα

2 α
TKαα

)
where

Kα =


1 −1
−1 2 1

. . .
. . .

. . .

−1 2 −1
−1 1

 .
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The Model
Stage 2 - Intrinsic Autoregressive (ICAR)

Spatially structured effect of area θi is assigned

θi |θ−i , λθ ∼ N

 1

mi

∑
j :j∼i

θj ,
1

miλθ


where mi is the # of neighbors. The improper joint distribution

can be written as p(θ|λθ) ∝ exp
(
−λθ

2 θ
TKθθ

)
, where

Kθ,ij =

 mi i = j
−1 i ∼ j

0 otherwise
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The Model
Stage 2 - iid prior for δ

Type I Independent multivariate Gaussian prior

δit |δ−it , λδ ∼ N (0, 1/λδ)

the joint distribution is

p(δ|λδ) ∝ exp
(
−λδ

2 δ
TKδδ

)
where Kδ = Kφ ⊗ Kγ = IkT×kT .
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The Model
Stage 2 - Random Walk prior for δ

Type II Temporal trends differ by area - first order random walk prior

δit |δ−it , λδ ∼ N
(

1

2
(δi ,t−1 + δi ,t+1), 1/(2λδ)

)
The improper joint distribution can be expressed as

p(δ|λδ) ∝ exp
(
−λδ

2 δ
TKδδ

)
where Kδ = Kφ ⊗ Kα (rank k(T − 1)).
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The Model
Stage 2 - ICAR prior for δ

Type III Spatial trends differ over time - Intrinsic autoregression prior

δit |δ−it , λδ ∼ N

 1

mi

∑
j :j∼i

δjt ,
1

miλδ


The improper joint distribution can be expressed as

p(δ|λδ) ∝ exp
(
−λδ

2 δ
TKδδ

)
Where Kδ = Kθ ⊗ Kγ (rank (k − 1)T ).
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The Model
Stage 2 - Space-Time prior for δ

Type IV Spatio-temporal interaction - conditional depends on first and
second order neighbors

δit |δ−it , λδ ∼

N

(
1
2 (δi,t−1 + δi,t+1) + 1

mi

∑
j :j∼i

δjt − 1
mi

∑
j :j∼i

(δj,t−1 + δj,t+1), 1
2miλδ

)

The improper joint distribution can be expressed as

p(δ|λδ) ∝ exp
(
−λδ

2 δ
TKδδ

)
Where Kδ = Kθ ⊗ Kα (rank (k − 1)(T − 1)).
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The Model
Stage 3 - Hyperpriors

Hyperparameters were all assigned

λ ∼ Gamma(1, 0.01)

resulting in a convenient posterior distribution. For example the
full conditional for λδ is:

λδ|δ ∼ Gamma
(
1 + 0.5× rank(Kδ), 0.01 + 0.5× δ′kδδ

)
where rank(Kδ) depends on the interaction type.
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Model Evaluation
Posterior Deviance

To compare fit and complexity of each model the saturated
deviance was calculated based on 2,500 samples from the posterior.

D(s) = 2
n∑

i=1

T∑
t=1

yit log

(
yit

nitπ
(s)
it

)
+ (nit − yit)log

 nit − yit

nit
(

1− π(s)
it

)


where π
(s)
it =

exp
(
η

(s)
it

)
1+exp

(
η

(s)
it

) .
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The Model
Implementation

Knorr-Held (2000) employed Markov chain Monte Carlo to sample
from the implied posterior distributions.

Univariate Metropolis steps were applied for each parameter and
hyperparameters were updated with samples from their full
conditionals.

MCMC in R: an update for every parameter in an interaction
model takes 0.1-0.2s.

Note: in INLA the main effects and interaction models type I-III
all fit in less than 20min.
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Ohio Lung Cancer
Posterior Distribution of the Deviance
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Ohio Lung Cancer
Posterior Distribution of the Deviance

Model Median Mean IQR SD

Main Effects
2187 2187 18.6 13.7
2187 2187 18.5 13.9

Type I
2086 2084 48.4 34.9
2083 2082 48.6 35.9

Type II
2073 2073 35.3 25.5
2071 2071 36.6 27.0

Type III
2144 2143 32.7 24.1
2142 2141 32.8 24.8

Type IV
2096 2096 36.2 26.0
2106 2106 32.8 24.7

Table: Laina’s values in black and Knorr-Held (2000) in gray.
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Ohio Lung Cancer
Type I interaction
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Ohio Lung Cancer
Type II interaction
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Knorr-Held (2000)
Conclusions & Critique

Provided and motivated a flexible approach for modeling
space-time data.

Was thin on MCMC details and diagnostics.

Did not motivate use of deviance over DIC or pD for model
selection.

Focussed exclusively on non-parametric smoothing approaches.

No discussion of incorporating covariates.
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Thank you!

Thank you all for your feedback and support throughout the
quarter. Specifically, I would like to thank:

William for suggesting a hair cut and shaded plots,

Bob for suggesting enthusiasm, and

Jon for suggesting this paper!
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Ohio Lung Cancer
Type III interaction
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Ohio Lung Cancer
Type IV interaction
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Knorr-Held (2000)
Next Steps

A logical next step was to make fitting these models much faster.

Knorr-Held and Rue (2002) introduced block updating

Rue and Held (2005) great overview of Gaussian Markov
Random Fields and more details on block updating

Schrodle and Held (2010) describes (poorly) how to fit models
from Knorr-Held (2000) in INLA.
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