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Classical approaches to model selection
If candidate models are nested, we can use the likelihood ratio test.

Cross validation (CV) is also an option, but (1) validation data is not
always readily available and (2) can be computationally intensive.

Otherwise, the general approach is to reduce each model we are considering
to a single number according to a well-justified criterion. There are two
that we are already familiar with ...

o Akaike’s Information Criterion:
AIC = —2log L+ 2p
e Bayesian Information Criterion:

BIC = —2log L + plogn

where £ denotes likelihood, p number of parameters (or complexity), and
n number of data points.



Classical approaches to model selection

One must be careful with how one uses these criterions, as they are moti-
vated by different philosophies.

There are many more ... (i.e. {rest of the alphabet}-IC); however, they
behave “similarly” in that their target model achieves a some form of
balance between measure of fit and complexity.

To develop a criterion for hierarchical model (e.g. random effects model)
selection, we need to first define a complexity measure for hierarchical
models. The most ambitious attempts so far have been made in smoothing
and neural network literature (Moody (1992), etc.).



Effective number of parameters

Consider the following random effects model:

Yil0;  ~ N(eiﬁfl)
0 ~ N,

fori=1,...,p.

Should the effective number of
parameters (or complexity) simply
be p?

The presence of a prior induces
dependency between the 6;s, which
reduces the dimensionality of the
model, so the actual complexity of
the model is < p.




Parameter(s) of focus

Suppose the full probability model factorizes as:

p(y,0,v) = p(y|0)p(01¥)p(v)

From which we can construct the following marginal distributions:
p(y,0) = p(y|0) /w p(O1y)p()dy = p(y10)p(0)

(i.e focused on )

p(y ) = /e p(y10)p(014)p(1))d0 = ply[)p(¢)

(i.e. focused on ).

Depending on the level (or focus), we can argue that two variants of the
model are of different complexities. For the rest of this presentation, we
take © to be our parameter(s) of focus.



A complexity measure for hierarchical models

Define:

do{y.0,0(y)} = —2log{p(y|0)} + 2log[p{y|f(y)}]
Spiegelhalter et al. defines the complexity of the focused model to be:
po{y.0,0(y)} = Eo)ylde{y.0,0(y)}] = Eojy[-2l0g{p(y|0)}]+2loglp{y|d(y)}]
where @ is often selected to be the posterior mean of 6.
We can also write pp as:
pPp = @ - D(é)

where D(0) = —2log{p(y|6)} + 2log{f(y)}, which we refer to as the
“Bayesian deviance.”



Some theoretical justification ...

If we were to assume a normal approximation to the posterior likelihood,
and expand D(6) about the posterior mean 6, then we can show, through
a series of (fun!) calculations that

Eo;y{D(0)} ~ D(0) + tr(—L5 V)

which implies that:
Pp ~ tl’(—L/e—/ V)

2 _
where L’H—’ = ak’giw so ng is the observed Fisher information at 8,

and V = E[(0—0)(6 —0)"].
Ifo=24 (i.e. under negligible prior information), we obtain,

PD = p



A convincing example

Consider the general hierarchical model described by Lindley and Smith
(1972). Suppose that:

Y ~ N(AO,G)
0 ~ N(Aw, G)

Then, through a series of (tedious) calculations, we can show that:
pp = tr(H) = Z hi;
i

where H is the hat matrix (i.e. projection matrix). In other words, the
effective number of parameters is the sum of the individual leverages.



Deviance Information Criterion

Based on this complexity measure, Spiegelhalter et al. propose the fol-
lowing criterion for comparing hierarchical models, which they term “De-
viance Information Criterion (DIC)”,

DIC = D(f) + 2pp

Recall that:
AIC = —2log L + 2p

We can think of DIC as a “generalized” version of AIC. In fact, when
working with flat priors, DIC serves as a decent approximation of AIC, since
0~0 = pp=~p.



Deviance Information Criterion

DIC is an approximation of the expected posterior loss when adopting a
particular model, assuming a logarithmic loss function.

One appealing aspect of using DIC is that it can be readily calculated using
Markov Chain Monte Carlo (MCMC) methods.

Because DIC behaves like AIC, DIC should be motivated by the same
reasons we apply AIC (as opposed to say, BIC) - i.e. to seek out the
model that minimizes information loss. Thus, it is a predictive approach
in that it chooses the model that would generate good predictions but is
not necessarily the true model.



Deviance Information Criterion

DIC does have the potential to select the model that over-fits since it “uses
the data twice.”

Ando (2007) developed a new criterion BPIC which corrects for the over-
fitting by adjusting for the asymptotic bias of the posterior mean of the
log-likelihood as an estimator for its expected log-likelihood.

It has also been noted that DIC is not invariant to parameterization, so
you will obtain different DIC values depending on how you parameterize
the model.
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