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Classical approaches to model selection

If candidate models are nested, we can use the likelihood ratio test.

Cross validation (CV) is also an option, but (1) validation data is not always
readily available and (2) can be computationally intensive.

Otherwise, the general approach is to reduce each model we are considering to
a single number according to a well-justified criterion. There are two that we
are already familiar with ...

• Akaike’s Information Criterion:

AIC = −2 logL+ 2p

• Bayesian Information Criterion:

BIC = −2 logL+ p log n

where L denotes likelihood, p number of parameters (or complexity), and n
number of data points.



Classical approaches to model selection

There are many more ... (i.e. {rest of the alphabet}-IC); however, they behave
“similarly” in that their target model achieves a some form of balance between
measure of fit and complexity.

To develop a criterion for hierarchical model (e.g. random effects model) selec-
tion, we need to first define a complexity measure for hierarchical models.

The most ambitious attempts so far have been made in smoothing and neural
network literature (Moody (1992), etc.) - see Network Information Criterion
or NIC.



Effective number of parameters

Consider the following random effects model:

Yi |θi ∼ N(θi , τ
−1
i )

θi ∼ N(ψ, λ−1)
(1)

for i = 1, . . . , p.

Should the effective number of parameters (or complexity) simply be p?

The presence of a prior induces dependency between the θi s, which reduces the
dimensionality of the model, so the actual complexity of the model is ≤ p.

The available data also influences the degree of dependency, which is consistent
with the idea that complexity should reflect the difficulty in estimation.



Effective number of parameters

Here is a schematic representation of the random effects model (1) from the
previous slide:
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Parameter(s) of focus

Suppose the full probability model factorizes as:

p(y , θ, ψ) = p(y |θ)p(θ|ψ)p(ψ)

This corresponds to a three-tiered hierarchical model.

From which we can construct the following marginal distributions:

p(y , θ) = p(y |θ)

∫
Ψ

p(θ|ψ)p(ψ)dψ = p(y |θ)p(θ) i.e. focused on Θ

OR

p(y , ψ) =

∫
Θ

p(y |θ)p(θ|ψ)p(ψ)dθ = p(y |ψ)p(ψ) i.e. focused on Ψ

We assume, by default, the model to be focused on Θ for the remainder of this
presentation.



A complexity measure for hierarchical models

Spiegelhalter et al. defines the complexity of the focused model to be:

pD{y ,Θ, θ̃(y)} = Eθ|y [−2 log{p(y |θ)}] + 2 log[p{y |θ̃(y)}]

where θ̃ is often selected to be the posterior mean of θ. More on this later.

We can also write pD as:

pD = D(θ)− D(θ̄)

where D(θ) = −2 log{p(y |θ)}+ 2 log{f (y)}, which we refer to as “Bayesian
deviance.”



Some theoretical justification ...

If we were to assume a normal approximation to the posterior likelihood, we
can expand D(θ) about the posterior mean θ̄ via a simple Taylor expansion as
follows:

D(θ) ≈ D(θ̄) + (θ − θ̄)T ∂D
∂θ

∣∣∣∣
θ̄

+ 1
2
(θ − θ̄)T ∂

2D
∂θ2

∣∣∣∣
θ̄

(θ − θ̄)

= D(θ̄)− 2(θ − θ̄)L′θ̄ − (θ − θ̄)TL′′θ̄ (θ − θ̄)
(2)

where L = log{p(y |θ)} and L′ and L′′ are its first and second derivatives wrto θ
respectively.

Taking posterior expectations, we achieve:

Eθ|y{D(θ)} = D(θ) = D(θ̄)− E [tr{(θ − θ̄)TL′′θ̄ (θ − θ̄)}]
= D(θ̄)− tr [L′′θ̄E{(θ − θ̄)T (θ − θ̄)}] (3)



Some theoretical justification ...

If we define V = E{(θ − θ̄)(θ − θ̄)T}, then:

Eθ|y{D(θ)} ≈ D(θ̄) + tr(−L′′θ̄V ) (4)

which implies that, under the normal approximation to the likelihood:

pD ≈ tr(−L′′θ̄V ) (5)

Note that: −L′′θ̄ is the observed Fisher information at θ̄, so pD can be thought
of as the fraction of information in the likelihood about the parameters relative
to the total information.

Under negligible prior information, we obtain,

pD ≈ p (6)

since θ̄ ≈ θ̂ and −(θ − θ̄)TL′′θ̄ (θ − θ̄) ≈ χ2
p.



A convincing example

Consider the general hierarchical model described by Lindley and Smith (1972).
Suppose that:

Y ∼ N(A1θ,C1)

θ ∼ N(A2ψ,C2)

Then, through a series of (tedious) calculations, we can show that:

pD = tr(H) =
∑
i

hii (7)

where H is the hat matrix (i.e. projection matrix). In other words, the effective
number of parameters is the sum of the individual leverages.



pD and Parameterization

pD is NOT invariant to parameterization:

Consider a binomial likelihood Bin(n, µ) with a conjugate prior B(a, b) on µ.
Let θ = logit(µ). Then, the (unstandardized) deviance is:

D(µ) = −2yiψ(a + y)− 2(n − y)ψ(b + n − y) + 2nψ(a + b + n)

and we have:

D(µ) = D(θ) = −2yψ(a + y)− 2(n − y)ψ(b + n − y) + 2nψ(a + b + n)

D(µ̄) = −2y log(a + y)− 2(n − y) log(b + n − y) + 2n log(a + b + n)

D(θ̄) = −2yψ(a + y) + 2yψ(b + n − y)

+ 2n log[1 + exp{ψ(a + y)− ψ(b + n − y)}]
D(µmed ) = D(θmed ) = −2y log(µmed )− 2(n − y) log(1− µmed )



pD and Parameterization
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Figure: pD for the binomial likelihood with conjugate prior example for different n, and prior
sample sizes (a + b) under the three different parameterizations



Deviance Information Criterion

Using this complexity measure, Spiegelhalter et al. propose the following crite-
rion for comparing hierarchical models, which they term “Deviance Information
Criterion,”

DIC = D(θ̄) + 2pD (8)

Recall that:

AIC = −2 logL+ 2p

We can think of DIC as a “generalized” version of AIC. In fact, when working
with flat priors, DIC serves as a decent approximation of AIC since pD ≈ p in
this case.



The Derivation

DIC is an approximation of the expected posterior loss when adopting a partic-
ular model, assuming a logarithmic loss function: L(Y , θ̃) = −2 log{p(Y |θ̃)} =
D(θ̃)

Assume that we have a replicate dataset Z derived from the same data-generating
mechanism as Y , our original dataset. We favour the model that minimizes the
expected loss that is suffered in predicting Z :

Ez|θ[L(Y , θ̃(y))]

We can estimate this predicted loss using L(Y , θ̃(y)) - the loss suffered from
re-predicting Y - however, this estimate is biased so we need to include an
“optimism” term c:

Ez|θ[L(Y , θ̃)(y)] = L(Y , θ̃(y)) + cΘ{y , θt , θ̃(y)}
= D(θ̃) + cΘ{y , θt , θ̃(y)}



The Derivation

The derivation mimics that used to derive the AIC (i.e. if we were to replace θ̃
with the MLE θ̂).

We can manipulate the above expression as:

cΘ{y , θ, θ̃(y)} = Ez|θ{Dz(θ̃)− Dz(θ)}+ Ez|θ{Dz(θ)− D(θ)}
+ {D(θ)− D(θ̃)}

We label the three components to the sum L1, L2 and L3. By definition, we
have

Eθ|y [L3] = Eθ|y{D(θ)− D(θ̃)} = pD

.



The Derivation

We perform a Taylor series expansion of L1 about θ (similar to proof shown a
few slides back):

L1 ≈ Ez|θ{−2 log[p(z|θ̃)] + 2 log[p(z|θ̃)]− 2(θ̃ − θ)TL′
z,θ − (θ̃ − θ)TL

′′
z,θ(θ̃ − θ)}

= Ez|θ{−2(θ̃ − θ)TL′
z,θ − (θ̃ − θ)TL

′′
z,θ(θ̃ − θ)}

where L
′
z,θ = ∂log [p(z|θ)]

∂θ (i.e. the score function) and L
′′
z,θ = ∂2 log [p(z|θ)]

∂θ2 . We note that

Ez|θ

{
∂log [p(z|θ)]

∂θ

}
= 0.

L1 ≈ Ez|θ{−(θ̃ − θ)TL
′′
z,θ(θ̃ − θ)}

= tr{−Ez|θ [L
′′
z,θ ](θ̃ − θ)T (θ̃ − θ)}

= tr{−I (θ)(θ̃ − θ)(θ̃ − θ)T}

≈ tr{−L
′′
θ̃ (θ̃ − θ)(θ̃ − θ)T}

Where the last line follows from a “good model” assumption. Taking the pos-
terior means, we have

Eθ|y [L1] = tr{−L
′′
θ̃ Eθ|y [(θ̃ − θ)(θ̃ − θ)T ]}

= tr{−L
′′
θ̃ V} ≈ pD



The Derivation

The L2 can be “ignored” because it can be shown to have a marginal expectation
of 0.

L2 = Ez|θ{−2 log[p(z|θ] + 2 log[p(y |θ)]}

Taking double expectations:

EyEθ|y [L2] = EyEθ|yEz|θ{−2 log[p(z|θ] + 2 log[p(y |θ)]}
= EθEy|θEz|θ{−2 log[p(z|θ] + 2 log[p(y |θ)]}
= Eθ [Ez|θ{−2 log[p(z|θ]} + Ey|θ{2 log[p(y |θ)]}] = 0

Putting all this together, we have

cΘ{y , θ, θ̃(y)} ≈ 2pD

Which implies:

Eθ|yEz|θ[L(Y , θ̃(y))] ≈ D(θ̃) + 2pD = D(θ) + pD (9)



Some Notes

• One appealing aspect of using DIC is that it can be readily calculated
using Markov Chain Monte Carlo (MCMC) methods.

• Because DIC behaves like AIC, DIC should be motivated by the same
reasons we apply AIC - i.e. to seek out the model that minimizes
information loss. It serves as a predictive approach to model selection

• It is not comparable to Bayes factors.



Implementation: Scottish Lip Cancer Data

We apply DIC in selecting a model for rates of lip cancer in 56 districts in
Scotland (Clayton and Kaldor, 1987; Breslow and Clayton, 1993). We assume
cancer counts yi are Poisson with mean Eiexp(θi ) where Ei is the expected
number of cases for county i , i = 1, . . . , 56.

We consider the following set of candidate models:

1. Pooled: θi = α0

2. Exchangeable: θi = α0 + γi , γi exchangeable random effects

3. Spatial: θi = α0 + δi , δi spatial random effects

4. Exchangeable + Spatial: θi = α0 + γi + δi

5. Saturated: θi = αi



Implementation: Scottish Lip Cancer Data

We placed an ...

• Improper flat prior on α0

• Normal priors with precision parameter λγ on the γi s

• Intrinsic conditional autoregressive (ICAR) prior (Besag, 1974) on the δi s

δi |δ\i ∼ N

 1

ni

∑
j∈Ai

δj ,
1

niλδ


• Weakly informative Γ(0.5, 0.0005) priors on λγ and λδ.

What Lina Did ...

• Ran two chains in WINBUGS; 15000 iterations each, following a burn-in
period of 5000 iterations

• Attempting to replicate results in R; succeeded for Models 1 and 2;

• Having issues with implementing ICAR MCMC



Implementation: Scottish Lip Cancer Data

The Results

Model pµD DICµ pθD DICθ pmed
D DICmed

Pooled 1.0 382.7 1.0 382.7 1.0 382.7
Exchangeable 42.8 103.8 43.3 104.3 43.4 104.4
Spatial 31.6 88.9 31.2 88.5 31.1 88.4
Exchangeable + Spatial 32.6 90.6 32.2 90.2 32.2 90.2
Saturated 55.9 111.9 52.9 108.9 54.7 110.7

where

• µ represents mean parameterization.

• θ represents canonical parameterization.

• med means taking θ̃ to be posterior median of θ.



Implementation: Scottish Lip Cancer Data
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Figure: Diagnostics for the Scottish lip cancer example; residuals versus leverages for Models (1)
through (5), from top left to bottom right



BPIC

DIC does have the potential to select the model that over-fits since it “uses the
data twice.”

Ando (2007) developed a new criterion BPIC which corrects for the over-fitting
by adjusting for the asymptotic bias of the posterior mean of the log-likelihood
as an estimator for its expected log-likelihood.

The form of the BPIC is quite complicated, but the penalty term reduces to 3pD

under similar approximations.

We note that DIC minimizes the posterior expected loss over a constrained
space. If we were to repeat the proof above using Ez|θ[L(Y , θ)] instead of

Ez|θ[L(Y , θ̃(y))] as the target, we can achieve 3pD as the penalty term, as noted
by van der Linde (2005).



Other Issues

The biggest issue (in my opinion) is that DIC is not invariant to parameterization,
so you will obtain different DIC values depending on how you parameterize the
model (as we noted with pD).

We see this in the Scottish lip cancer example, although the authors also provide
a more extreme demonstration in the paper (not shown).



To Do List

• Get the ICAR MCMC to work.

• Work through the last computational example in the paper (the six-cities
study) - got the code to work, just haven’t had time to compile or look at
the results ...
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