Bayesian measures of model complexity and fit

D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. van der Linde (2002)

Presented by: Lina Lin

STAT/BIOST 572

May 21, 2013



Classical approaches to model selection

The goal is to select the “best approximating model”, which achieves the optimal
balance between “fit" and “complexity.”

o Cross-validation is the intuitive approach, but (1) validation data is not
always readily available and (2) can be computationally intensive.

e An idea that has gained much traction over recent years is the use infor-
mation criterions.

e Ex. Akaike's Information Criterion (Akaike, 1973):
AIC = —2log L(A) + 2p
e Ex. Bayesian Information Criterion (Schwarz, 1978):
BIC = —2log L() + 2plogn

where £(6) denotes the maximized likelihood, p number of free parameters
and n number of observations.
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A Generalized Criterion for Hierarchical Models

For practical reasons, we would like to develop a criterion for hierarchical model
(e.g. random effects model) selection.

Both AIC and BIC are characterized as a sum of a “fit” term (£) and a “com-
plexity term” (a monotonically increasing function of p).

While this is by no means rigorous justification, we would expect our criterion
to feature these components, which implies that we need to first define a
complexity measure for hierarchical models.

The most ambitious attempts so far have been made in smoothing and neural

network literature: see Wahba (1990), Moody (1992), MacKay (1995) and Ripley
(1996).
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Effective number of parameters (pesr)

Consider the following random effects model:

Yi|6;
0;

~

~

N(9i7 Ti_l)
N, A7)

fori=1,...,p.

Question: Is p.ff = p?

(1)

The presence of a prior induces dependency between the 6;'s, which reduces the

dimensionality of the model, so the actual complexity of the model is < p.

The available data also influences the degree of dependency, which is consistent
with the idea that complexity should reflect the difficulty in estimation. We

will return to this idea later.
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Effective number of parameters (pesr)

Here is a schematic representation of the random effects model (1) from the
previous slide:
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Parameter(s) of focus

The full probability model for (1) factorizes as:

p(y,0,¢) = p(y|0)p(0)p(v)

From which we can construct the following marginal distributions:

o p(y,0) = p(y|0) [, p(01%)p(x)dy = p(y|0)p(6) |ie. focused on O]

OR

o p(y,y) = fe (v10)p(8|1)p(v)dO = p(y|¥)p(v) ’i.e. focused on \U‘

We assume, by default, the model to be focused on © for the remainder of this
presentation.



A complexity measure for hierarchical models

Spiegelhalter et al. define the complexity of the focused model to be:

po{y,©,0(y)} = Egy[—2log{p(y|0)}] + 2log[p{y|0(y)}]

where 6 is often selected to be the posterior mean of 6.

We can also write pp as:

po = D(0) - D(D) (2)
where D(0) = —2log{p(y|0)} + 2log{f(y)}, which we refer to as “Bayesian
deviance.”

Why?

The “non-Bayesian” variant:

do{y,©,0(y)} = —2log{p(y|0)}] + 2log[p{y|0(y)}

is an approximation to the complexity term found in the Takeuchi Information
Criterion (TIC).
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pp under normal approximation to the likelihood

If we were to assume a normal approximation to the posterior likelihood, we
can expand D(6) about the posterior mean 6 via a secord-order Taylor
expansion and obtain the following result:

po ~ tr(~Lj V) (3)
where V = E{(6 —8)(6 — 8)"}.

Note that: —L’G—’ is the observed Fisher information at 8, so pp can be
thought of as the fraction of information in the likelihood about the parameters
relative to the total information.

Under negligible prior information (i.e. flat priors), we obtain,

P ~ p (4)
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A information-theoretic justification for pp

The “mutual information” between Y and © is;

Z(0,Y) = / p(0,y)log %d&/y = KL(p(8,y), p(0)p(y))

and the symmetrized “mutual information”:
J(0,Y) = KL(p(6,y), p(0)p(y)) + KL(p()p(y), P(0. y))

where “KL" stands for Kullback-Leibler divergence, a measure of “distance”
between two densities.

“Mutual information” measures how sensitive the posterior distribution of
is to the observations Y, and thus, corresponds to difficulty in estimation,

which agrees with our notions on “model complexity.”

van der Linde (2005) showed that (for conjugate exponential families):

| Po ~ T (Opost, 2) | (5)

where 0,05t represents the posterior 6, and Z represents future observations
derived from same data-generating mechanism.
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A convincing example

Consider the general hierarchical model described by Lindley and Smith (1972).
Suppose that:

Y ~ N(A6,G)
0 ~ N(Ax, G) 6)

Then, through a series of (tedious) calculations, we can show that:

pp = tr(H) = Z hii (M)

where H is the hat matrix (i.e. projection matrix).

In other words, the effective number of parameters is the sum of the individual
leverages: how much of an effect each Y has on the overall fit.

This matches previous suggestions made by Ye (1998) for model complexity.
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Deviance Information Criterion

Using this complexity measure, Spiegelhalter et al. propose the following crite-
rion for comparing hierarchical models, which they term “Deviance Information
Criterion,”

DIC = D(0) + 2pp (8)

Recall that:
AIC = —2log L(A) + 2p

We can think of DIC as a “generalized” version of AIC.

In fact, when working with fJat priors, DIC serves as a decent approximation
of AIC since D(0) =~ —2log £() and pp = p in this case.
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The Derivation

DIC is an approximation of the expected posterior loss when adopting a par-
ticular model, assuming a logarithmic loss function:

£(v,0) = ~210g{p(Y|#)} = D()

Assume that we have a replicate dataset Z derived from the same data-generating
mechanism as Y, our original dataset. We favour the model that minimizes the
expected loss that is suffered in predicting Z:

Ezo[L(Y,0(y))]

We can estimate this predicted loss using £(Y,d(y)) - the loss suffered from
re-predicting Y - however, this estimate is biased so we need to include an
“optimism” term c (Efron, 1986):

E.iolL(Y,0)(y)]

Z(Yé(y)) + Ce{gfﬁtsé(}’)} (9)
= D(0)+ cofy. 0", 0(y)}
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The Derivation

The derivation mimics that used to derive the AIC (i.e. if we were to replace 6
with the MLE 6).

We can manipulate the above expression (9) as:

cofy,0,6(y)} = E.o{D:(0) — D:(6)} + E;jo{D:(6) — D(6)}
+ {D(6) - D(0)}

We label the three components to the sum £;, £, and L£3. By definition, we
have

(3)  EoyylLs] = Eg,{D(0) — D(6)} = pp
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The Derivation

We perform a Taylor series expansion of £; about 6:

Q

1) L E.jo{—2log[p(z|0)] + 2 log[p(z|d)] — 2(6 — 0) "L,
(G—0)TL,o(6—6)}

= Eo{-200-0)"Ly—(0-6)L,o0-06)}

We note that £, {%} =0.

Eno{—(6 — 0)L, (6 — 0)}
tr{—E,jo[L..6](0 — 6)7 (6 — 0)}
tr{—Ly (6 — 0)(§ —0)7}

Ly

Q

%

Where the last line follows from a “good model” assumption. Taking the pos-
terior means, we have

tr{—Ly Eo, [(6 — 6)(§ — 6)1}
= tr{-L;V}~pp

Eo)y[£4]
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The Derivation

The L5 can be “ignored” because it can be shown to have a marginal expectation
of 0.

(2) Lo = E;p{—2log[p(z]0] + 2log[p(y|0)]}

Taking double expectations:

E/Epy[L2] = EyEpyEjo{—2log[p(2]6] + 2log[p(y[0)]}
EoEy0E.j0{—2log[p(z|0] + 2log[p(y|0)]}
Eg[E;jo{—2log[p(z]0]} + Eyj0{2log[p(y|6)]}] =0

Putting all this together, we have

Eqpylco{y,0,6(y)} =~ 2pp (10)

Which implies:

Eoly Ex1o[£(Y,6(y))] = D(8) + 2pp = D(6) + po (11)

15 /22



Implementation: Scottish lip cancer data

We apply DIC in selecting a model for rates of lip cancer in 56 districts in
Scotland (Clayton and Kaldor, 1987; Breslow and Clayton, 1993). We assume
cancer counts y; are Poisson with mean Ejexp(6;) where E; is the expected
number of cases for county i, i =1,...,56.

We consider the following set of candidate models:

Pooled: 0; = ap

Exchangeable: 0; = ag + 7i, i exchangeable random effects
Spatial: 0; = ap + 6;, ; spatial random effects
Exchangeable + Spatial: 6, = ag + i + i

Saturated: 0, = «;

o & =

We placed an improper flat prior on g, zero-mean normal priors with precision
Ay on the «;'s, an ICAR prior on the §;'s (Besag, 1974) with precision
parameter )5 , and weakly informative (0.5,0.0005) on A, and As.
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Implementation: Scottish lip cancer data

Model ph DIC* p  DIC” ppe DIC™
Pooled 1.0 382.7 1.0 382.7 1.0 382.7
1.0 382.7 1.0 382.7 1.0 382.7
Exchangeable 428 103.8 433 1043 434 1044
429 1040 434 1045 435 104.6
Spatial 31.6 88.9 31.2 88.5 31.1 88.4
31.7 89.9 31.2 895 31.1 89.3
Exchangeable + Spatial 32.6 90.6 322 90.2 322 90.2
31.8 89.7 314 89.3 31.3 89.2
Saturated 559 1119 529 108.9 547 110.7
55.9 111.7 52.8 108.6 545 110.4

Table: Summary of calculated pp and DIC values after running 15000 MCMC
iterations following a burn-in period of 5000 iterations under the three different
parameterizations: mean(u), canonical (), and median(med)
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Implementation: Six-cities study

We consider modelling a subset of data from the six-cities study, a longitudinal
study of the health effects of air pollution (Fitmaurice and Laird, 1993).

Yj ~ Bern(pj)
pi = & (ny) (12)
pi = Po+ Pi(aj —3) + Pa(si —5) + Pa(siayj — 5a)

where Yj; is wheezing status (1 for yes, 0 for no) of child i at time j, s; is
smoking status of child i's mother, and a; is age of child i at time j.

The three models are:

1. g(py) = log{ps/(1 — py)} |logit link
2 600 =9 7p)

3. g(pij) = log{—log(1 — p;)} ‘complementary log-log Iink‘

We place flat priors on (o, ..., 33, a normal prior on [ with precision \ and a
(0.001,0.001) prior on A.
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Implementation: Six-cities study

Model ph Dic*  p% DIC?
Logit 169.5 13343 2472 14121
168.9 13353 248.7 14151
Probit 159.0 1306.0 262.1 1409.1
158.7 1307.3 262.7 14113
Complementary Log-Log 167.0 1350.8 224.1 1407.8
167.2 1348.1 2244 1405.3

Table: Summary of calculated pp and DIC values after running 10000 MCMC

iterations following a burn-in period of 10000 iterations under two different

parameterizations: mean(u) and canonical ()
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BPIC

DIC does have the potential to select the model that over-fits since it “uses the
data twice,” and thus “under-penalizes” complexity.

Ando (2007) developed a new criterion Bayesian Predictive Information
Criterion (BPIC) which corrects for the over-fitting.

The form of BPIC is quite complicated, but its complexity term is similar to
that of TIC's. The penalty term reduces to 3pp under similar approximations
made by Spiegelhalter et al. in the DIC derivation.

We note that DIC minimizes the posterior expected loss over a constrained
space. If we were to repeat the proof above using E,o[L(Y,0)] instead of

E;olL(Y, 6(y))] as the target, we can achieve 3pp as the penalty term, as noted
by van der Linde (2005).
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Pros and Cons of DIC

Cons

1. Can be readily computed
using MCMC.

2. Equivalent to AIC under
vague priors.

1. Not invariant to
parameterization.

2. Selection of § arbitrary; no
guidelines

3. Does not work for mixture
models, or in general when
posterior densities are non
log-concave.
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