Bi-cross-validation of the SVD and the Nonnegative Matrix Factorization

Art Owen and Patrick Perry presented by Linbo Wang

April 18th, 2013
Biostat 572: Advanced Regression Methods: Project

Introduction: Statistical modeling ${ }^{1}$

- Statistical model: $\mathbf{Y}=\boldsymbol{\Theta}+\mathbf{E}$
- Y: Observed data, potentially a matrix
(e.g. subject \times academic fields)
- $\boldsymbol{\Theta}$: Mean model: a fixed pattern we want to recover
- \mathbf{E} : Covariance Model: $E[\mathrm{E}]=0$
- Mean model

1. Regression model: $\boldsymbol{\Theta}=\boldsymbol{\Theta}(\mathbf{B}, \mathbf{X}), \mathbf{X}$ observed (given)

- Supervised learning problem
- Unsupervised learning problem
${ }^{1}$ From Peter Hoff's notes on CSSS 594

Introduction: Statistical modeling ${ }^{1}$

- Statistical model: $\mathbf{Y}=\boldsymbol{\Theta}+\mathbf{E}$
- Y: Observed data, potentially a matrix
(e.g. subject \times academic fields)
- $\boldsymbol{\Theta}$: Mean model: a fixed pattern we want to recover
- \mathbf{E} : Covariance Model: $E[\mathrm{E}]=0$
- Mean model

1. Regression model: $\boldsymbol{\Theta}=\boldsymbol{\Theta}(\mathbf{B}, \mathbf{X}), \mathbf{X}$ observed (given)

- Supervised learning problem

2. Rank/factor model: $\boldsymbol{\Theta}=\boldsymbol{\Theta}(\mathbf{B}, \mathbf{F}), \mathbf{F}$ latent

- Unsupervised learning problem
${ }^{1}$ From Peter Hoff's notes on CSSS 594

Example ${ }^{2}$

- Outcome: examination scores from each of 10 different academic fields of 1000 students
- Latent covariates: "verbal intelligence", " mathematical intelligence", "EQ", etc.
- Build a model with the latent covariates

$$
\mathbf{Y}=\mathbf{B F}+\mathbf{E}
$$

- $\mathbf{Y} \in \mathbf{R}^{n \times s}, \mathbf{F} \in \mathbf{R}^{n \times r}, \mathbf{B} \in \mathbf{R}^{r \times s}$
- we would want $\operatorname{rank}(\mathbf{B F})<\operatorname{rank}(\mathbf{Y})$

[^0]
Example ${ }^{2}$

- Outcome: examination scores from each of 10 different academic fields of 1000 students
- Latent covariates: "verbal intelligence", " mathematical intelligence", "EQ", etc.
- Build a model with the latent covariates

$$
\mathbf{Y}=\mathbf{B F}+\mathbf{E}
$$

- $\mathbf{Y} \in \mathbf{R}^{n \times s}, \mathbf{F} \in \mathbf{R}^{n \times r}, \mathbf{B} \in \mathbf{R}^{r \times s}$
- we would want $\operatorname{rank}(\mathbf{B F})<\operatorname{rank}(\mathbf{Y})$
- Mathematically: lower-rank approximation to \mathbf{Y}

[^1]
Recall: linear regression

- Projection of Y to $R(X) \triangleq$ span $\{$ column space of $\mathbf{X}\}$

Figure: OLS estimation in linear regression is a projection. ${ }^{3}$
${ }^{3}$ From Daniela Witten's 533 lecture notes.

Estimation method: Truncated SVD

- Singular Value Decomposition (SVD):

$$
\mathbf{Y}=\mathbf{U D V}^{T}=\sum_{k=1}^{n} d_{k} u_{k} v_{k}^{T}
$$

- $d_{1} \geq d_{2} \geq \cdots \geq d_{n} \geq 0$
- Eckart and Young(1936): Given $\operatorname{rank}(\mathbf{B F})=r$, the following truncated SVD minimized square error $\|\mathbf{Y}-\mathbf{B F}\|_{2}^{2}$

$$
\hat{\mathbf{B F}}=\sum_{k=1}^{r} d_{k} u_{k} v_{k}^{T}=U_{r} D_{r} V_{r}^{T}
$$

Estimation method: Truncated SVD

- $\mathbf{Y}_{n \times s}=\mathbf{U}_{n \times s} \mathbf{D}_{s \times s} \mathbf{V}_{s \times s}^{T} \approx \mathbf{U} 1_{n \times r} \mathbf{D} 1_{r \times r} \mathbf{V} 1_{r \times r}^{T}$

Figure: Comparison of SVD and truncated SVD ${ }^{4}$
${ }^{4}$ Figure adapted from http://web.eecs.utk.edu/ berry/Isi++/node8.html

Estimation method: Truncated SVD

- $\mathbf{Y}_{n \times s}=\mathbf{U}_{n \times s} \mathbf{D}_{s \times s} \mathbf{V}_{s \times s}^{T} \approx \mathbf{U} 1_{n \times r} \mathbf{D} 1_{r \times r} \mathbf{V} 1_{r \times r}^{\top}$

Figure: Comparison of SVD and truncated SVD ${ }^{4}$

- Question: How to choose r?
${ }^{4}$ Figure adapted from http://web.eecs.utk.edu/ berry/lsi++/node8.html

How to choose r?

- F-test(Dias and Krzanowski(2003)): standard approach for model selection, but F-tests are not reliable here.
- Square error $\|\mathbf{Y}-\mathbf{B F}\|_{2}^{2}$
- Prone to overfitting
- Usual practice (Hoff(2007)): look for where the last large gap or elbow appears in a plot of singular values
- Lack of numerical standards
- Wold(1978) : add terms until the residual standard error matches the noise level
- requires knowledge of noise level, which we usually don't have
- Cross validation: usual practice for supervised learning, as well as providing numerical standards
- non-trivial under unsupervised learning settings

Cross validation under unsupervised learning

- "The" way to choose r if we know how to do it, especially for prediction purpose
- We don't know covariates as in regression/supervised learning setting, then what can we do?
-

$$
\mathbf{Y}_{n \times s}=\mathbf{X}_{n \times p} \mathbf{B}_{p \times s}+\mathbf{E}_{n \times s}
$$

\bullet

$$
(\mathbf{Y}, \mathbf{X})=\left(\begin{array}{cc}
\mathbf{Y}_{1: r, 1: s} & \mathbf{X}_{1: r, 1: p} \\
\mathbf{Y}_{(r+1): n, 1: s} & \mathbf{X}_{(r+1): n, 1: p}
\end{array}\right)
$$

- What can we do without knowing X ?
- How to choose the left-out portion? (i.e. r in the above example)

Summary

- Factor model is a popular alternative to regression model
- Lower rank approximation to the observed data can be obtained via truncated SVD
- Current practice of choice of k is arbitrary
- Problem: cross-validation for unsupervised learning

Questions?

Bi-cross-validation

- Usual cross-validation leaves rows out
- $\mathbf{Y}=\binom{\mathbf{Y}_{1: r, 1: s}}{\mathbf{Y}_{(r+1): n, 1: s}}$
- doesn't work here!
- Bi-cross-validation (BCV): leaves out rows and columns simultaneously
- example: test scores from 100 students on 10 academic fields
- Most authors consider leaving out a 1 ₹ 1 matrix

Bi-cross-validation

- Usual cross-validation leaves rows out
- $\mathbf{Y}=\binom{\mathbf{Y}_{1: r, 1: s}}{\mathbf{Y}_{(r+1): n, 1: s}}$
- doesn't work here!
- Bi-cross-validation (BCV): leaves out rows and columns simultaneously
- $\mathbf{Y}_{n \times s}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$
- example: test scores from 100 students on 10 academic fields
- Most authors consider leaving out a 1×1 matrix

[^0]: ${ }^{2}$ From wikipedia item on factor analysis

[^1]: ${ }^{2}$ From wikipedia item on factor analysis

