Bi-cross-validation of the SVD and the Nonnegative Matrix Factorization

Art Owen and Patrick Perry presented by Linbo Wang

May 9th, 2013
Biostat 572: Advanced Regression Methods: Project

Problem

- Problem: lower-rank approximation to matrix \mathbf{Y}

$$
\mathbf{Y}=\mathbf{M}+\mathbf{E}
$$

- $\mathbf{Y} \in \mathbf{R}^{m \times n}, \mathbf{M} \in \mathbf{R}^{m \times n}$
- $k=\operatorname{rank}(\mathbf{M})<\operatorname{rank}(\mathbf{Y})=\min (m, n)$
- Motivation: factor analysis

$$
\mathbf{Y}=\mathbf{B F}+\mathbf{E}
$$

- What is special: unsupervised learning

Given k (rank of M): Truncated SVD

- Eckart and Young(1936): Given $\operatorname{rank}(\mathbf{M})=k$, the following truncated SVD minimized square error $\|\mathbf{Y}-\mathbf{M}\|_{2}^{2}$

Figure: Comparison of SVD and truncated SVD ${ }^{1}$

- Question: How to choose k?
${ }^{1}$ Figure adapted from http://web.eecs.utk.edu/ berry/Isi++/node8.html

How to choose k?

- Usual practice (Hoff(2007)): look for where the last large gap or elbow appears in a plot of singular values
- Lack of numerical standards
- Cross validation: usual practice for supervised learning, as well as providing numerical standards
- non-trivial under unsupervised learning settings

Bi-cross-validation

- Usual cross-validation leaves rows out
- $\mathbf{Y}=\binom{\mathbf{Y}_{1: r, 1: n}}{\mathbf{Y}_{(r+1): m, 1: n}}$
- doesn't work here!
- Bi-cross-validation (BCV): leaves out rows and columns simultaneously
- $\mathbf{Y}_{m \times n}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$
- example: test scores from 100 students on 10 academic fields
- Most previous authors consider leaving out a 1×1 matrix

Eastment and Krzanowski (1982)

- Recall from SVD:
- $\mathbf{Y}_{m \times n}=\mathbf{U}_{m \times n} \mathbf{D}_{n \times n} \mathbf{V}_{n \times n}^{T}=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$
- U represents row information, and V represents column information.
- Eastment and Krzanowski (1982):
- $(C, D)_{(m-1) \times n}=\mathbf{U} 1_{(m-1) \times n} \mathbf{D} 1_{n \times n} \mathbf{V} 1_{n \times n}^{T} \approx$ $\overline{\mathbf{U}} 1_{(m-1) \times k} \overline{\mathbf{D}} 1_{k \times k} \overline{\mathrm{~V}} 1_{k \times k}^{T}$
- $\binom{B}{D}_{m \times(n-1)}=\mathbf{U} 2_{m \times(n-1)} \mathbf{D} 2_{(n-1) \times(n-1)} \mathbf{V} 2_{(n-1) \times(n-1)}^{T} \approx$
$\overline{\mathrm{U}} 2_{m \times k} \overline{\mathbf{D}} 2_{k \times k} \overline{\mathbf{V}} 2_{k \times k}^{T}$
- $U_{m \times n} \approx U 2_{m \times(n-1)} \approx \overline{\mathbf{U}} 2_{m \times k}, V_{n \times n}^{T} \approx V 1_{n \times n}^{T} \approx \overline{\mathbf{V}} 1_{k \times k}^{T}$
- $D_{k \times k} \approx \sqrt{\bar{D} 1_{k \times k} \bar{D} 2_{k \times k}}$
- $A_{1 \times 1}=\hat{Y}[1,1]$

Eastment and Krzanowski (1982)

- Recall from SVD:
- $\mathbf{Y}_{m \times n}=\mathbf{U}_{m \times n} \mathbf{D}_{n \times n} \mathbf{V}_{n \times n}^{T}=\left(\begin{array}{cc} & B \\ C & D\end{array}\right)$
- U represents row information, and V represents column information.
- Eastment and Krzanowski (1982):
- $(C, D)_{(m-1) \times n}=\mathbf{U} 1_{(m-1) \times n} \mathbf{D} 1_{n \times n} \mathbf{V} 1_{n \times n}^{T} \approx$ $\overline{\mathbf{U}} 1_{(m-1) \times k} \overline{\mathbf{D}} 1_{k \times k} \overline{\mathrm{~V}} 1_{k \times k}^{T}$
- $\binom{B}{D}_{m \times(n-1)}=\mathbf{U} 2_{m \times(n-1)} \mathbf{D} 2_{(n-1) \times(n-1)} \mathbf{V} 2_{(n-1) \times(n-1)}^{T} \approx$
$\overline{\mathrm{U}} 2_{m \times k} \overline{\mathbf{D}} 2_{k \times k} \overline{\mathbf{V}} 2_{k \times k}^{T}$
- $U_{m \times n} \approx U 2_{m \times(n-1)} \approx \overline{\mathbf{U}} 2_{m \times k}, V_{n \times n}^{T} \approx V 1_{n \times n}^{T} \approx \overline{\mathbf{V}} 1_{k \times k}^{T}$
- $D_{k \times k} \approx \sqrt{\bar{D} 1_{k \times k} \bar{D} 2_{k \times k}}$
- $A_{1 \times 1}=\hat{Y}[1,1]$

Eastment and Krzanowski (1982)

- Best known method up to date (cited by 237 up to date)
- Critiques
- cross-validation errors decrease monotonically with k
- some awkward adjustments based on estimated degree of freedom are used in practice.
- sign for singular vectors $\mathbf{u}_{i}, \mathbf{v}_{i}^{T}$ is not determined
- Linbo: lack of theoretical justification

Bi-cross-validation (BCV)

- Motivation: cross-validation of principal component regression $(P C R)^{2}$
- First studied by Gabriel (2002) in 1×1 case.
- avoids drawbacks of Eastment and Krzanowski (1982)
${ }^{2}$ This is a made-up motivation by the presenter.

Bi-cross-validation (BCV)

$$
\mathbf{Y}=\left(\begin{array}{cc}
A_{1: r, 1: s} & B_{1: r,(s+1): n} \\
C_{(r+1): m, 1: s} & D_{(r+1): m,(s+1): n}
\end{array}\right)
$$

- Fit a principal component regression of C on D :
$\hat{\beta}=\left(\hat{D}^{(k)}\right)^{-C}$
- $D^{(k)}$ is the best rank-k approximation to D
- "-" is the Moore-Penrose generalized inverse
- Get "estimate" of A by $B \hat{\beta}$
- Do this for different hold-out portion A

$$
B C V(k)=\sum_{i=1}^{h} \sum_{j=1}^{l}\left\|A(i, j)-B(i, j)(\hat{D}(i, j))^{-} C(i, j)\right\|_{F}^{2}
$$

- Counterintuitive: Use the best rank for D as the best rank for Y.

Properties

- Theoretical properties ("Model Selection Consistency"):
- Self-consistency property
- Pure Gaussian noise (true $\mathrm{k}=0$)
- Asymptotically: $E[B C V(1)]>E[B C V(0)]$
- Rank 1 plus Gaussian noise (true $\mathrm{k}=1$)
- Asymptotically: $E[B C V(1)]<E[B C V(0)]$ under some conditions
- Empirical properties (next time...)
- Cross-validation error is U-shape with respect to k

Model Selection Consistency

- Self-consistency property
- $\mathbf{Y}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$
- Conditions: $\operatorname{rank}(Y)=\operatorname{rank}(\mathrm{D})=\mathrm{k}$
- Conclusion: $A-B\left(\hat{D}^{k}\right)^{-} C=A-B D^{-} C=0$
- Eastment and Krzanowski (1982) generally doesn't have such property

Model Selection Consistency

- True rank k=0: $Y_{m \times n}=0_{m \times n}+Z_{m \times n}$
- $Z_{i j} \stackrel{\mathrm{iid}}{\sim} N(0,1)$
- $c \approx m / n$: size of matrix
- hold out proportion is constant: $r / m=s / n=\theta$
- True rank $\mathrm{k}=1: Y_{m \times n}=\kappa u_{m \times 1} v_{n \times 1}{ }^{T}+Z_{m \times n}$
- $u_{m \times 1}$ and $v_{n \times 1}$ are unit vectors
- root mean square of noise: $\left(E\left[Z_{i j}^{2}\right]\right)^{1 / 2}=1$
- root mean square of signal: $\left(E\left(\kappa u v^{T}\right)^{2} / m n\right)^{1 / 2}=\kappa \sqrt{m n}$
- Assume $\kappa^{2}=\delta \sqrt{m n}, \delta>1$ represents the strength of signal.

Choice of hold out portion

Table 1
This table summarizes expected cross-validated squared errors from the text. The lower right entry is conservative as described in the text. The value $\eta \in(1 / 2,1)$ represents a lower bound on the proportion not held out, for each singular vector u and v. The value θ is an assumed common value for r / m and s / n and $\delta>1$ is a measure of signal strength

$\mathbb{E}(\mathbf{B C V}(\boldsymbol{k}))-\boldsymbol{m n}$	True $\boldsymbol{k}=\mathbf{0}$	True $\boldsymbol{k}=\mathbf{1}$
Fitted $k=0$	0	$\delta \sqrt{m n}$
Fitted $k=1$	$\frac{1}{1-\theta} \frac{\sqrt{m n}}{\sqrt{c}+1 / \sqrt{c}+2}$	$\sqrt{m n}\left(\delta(1-1 / \eta)^{2}+c^{3 / 2}+c^{-3 / 2}+1 / \delta\right)$

- Smaller aspect ratio ($c \approx m / n$ closer to 1) is advantageous.
- Larger hold out portion θ will favor selection of lower rank.
- Small holdouts is more prone to overfitting.
- Large holdouts is more prone to underfitting.
- In practice, the authors recommend a (2×2) - fold or (3×3) - fold BCV. (more about this next time...)

Summary

- Lower rank approximation to the observed data can be obtained via truncated SVD.
- Current practice of choice of k is arbitrary
- Bi-cross-validation(BCV) is a reasonable generalization of cross-validation to this unsupervised learning setting.
- Some theoretical justifications for BCV is presented, and more needs to be discovered.
- Choice of holdout size is still an open problem.

Coming next...

- Simulation results
- Real data application
- Discussion

Questions?

