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Problem

I Problem: lower-rank approximation to matrix Y

Y = M + E

• Y ∈ Rm×n,M ∈ Rm×n

• k = rank(M) < rank(Y) = min(m, n)

I Motivation: factor analysis

Y = BF + E

I What is special: unsupervised learning
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Given k (rank of M): Truncated SVD

I Eckart and Young(1936): Given rank(M) = k, the following
truncated SVD minimized square error ‖Y −M‖2

2

Figure: Comparison of SVD and truncated SVD 1

• Question: How to choose k?

1Figure adapted from http://web.eecs.utk.edu/ berry/lsi++/node8.html
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How to choose k?

I Usual practice (Hoff(2007)): look for where the last large gap
or elbow appears in a plot of singular values

• Lack of numerical standards

I Cross validation: usual practice for supervised learning, as well
as providing numerical standards

I non-trivial under unsupervised learning settings
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Bi-cross-validation

I Usual cross-validation leaves rows out

• Y =

(
Y1:r ,1:n

Y(r+1):m,1:n

)

• doesn’t work here!

I Bi-cross-validation (BCV): leaves out rows and columns
simultaneously

• Ym×n =

(
A B
C D

)

• example: test scores from 100 students on 10 academic fields

• Most previous authors consider leaving out a 1× 1 matrix

5 / 17



Eastment and Krzanowski (1982)

I Recall from SVD:

• Ym×n = Um×nDn×nV
T
n×n =

(
A B
C D

)

• U represents row information, and V represents column
information.

I Eastment and Krzanowski (1982):

• (C ,D)(m−1)×n = U1(m−1)×nD1n×nV1T
n×n ≈

Ū1(m−1)×kD̄1k×kV̄1
T
k×k

•
(

B
D

)

m×(n−1)

= U2m×(n−1)D2(n−1)×(n−1)V2T
(n−1)×(n−1) ≈

Ū2m×kD̄2k×kV̄2
T
k×k

I Um×n ≈ U2m×(n−1) ≈ Ū2m×k , V T
n×n ≈ V 1T

n×n ≈ V̄1
T
k×k

I Dk×k ≈
√

D̄1k×kD̄2k×k

I A1×1 = Ŷ [1, 1]
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Eastment and Krzanowski (1982)

I Best known method up to date (cited by 237 up to date)
I Critiques

• cross-validation errors decrease monotonically with k

• some awkward adjustments based on estimated degree of
freedom are used in practice.

• sign for singular vectors ui , vT
i is not determined

• Linbo: lack of theoretical justification
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Bi-cross-validation (BCV)

I Motivation: cross-validation of principal component regression
(PCR) 2

I First studied by Gabriel (2002) in 1× 1 case.

I avoids drawbacks of Eastment and Krzanowski (1982)

2This is a made-up motivation by the presenter.
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Bi-cross-validation (BCV)

I

Y =

(
A1:r ,1:s B1:r ,(s+1):n

C(r+1):m,1:s D(r+1):m,(s+1):n

)

I Fit a principal component regression of C on D:
β̂ = (D̂(k))−C

• D(k) is the best rank-k approximation to D
• ”-” is the Moore-Penrose generalized inverse

I Get ”estimate” of A by Bβ̂

I Do this for different hold-out portion A

BCV (k) =
h∑

i=1

l∑

j=1

‖A(i , j)− B(i , j)(D̂(i , j))−C (i , j)‖2
F

I Counterintuitive: Use the best rank for D as the best rank for
Y .
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Properties

I Theoretical properties (”Model Selection Consistency”):

• Self-consistency property
• Pure Gaussian noise (true k=0)

• Asymptotically: E [BCV (1)] > E [BCV (0)]

• Rank 1 plus Gaussian noise (true k=1)

• Asymptotically: E [BCV (1)] < E [BCV (0)] under some
conditions

I Empirical properties (next time...)

• Cross-validation error is U-shape with respect to k
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Model Selection Consistency

I Self-consistency property

• Y =

(
A B
C D

)

• Conditions: rank(Y)=rank(D)=k
• Conclusion: A− B(D̂k)−C = A− BD−C = 0

I Eastment and Krzanowski (1982) generally doesn’t have such
property
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Model Selection Consistency

I True rank k=0: Ym×n = 0m×n + Zm×n

• Zij
iid∼ N(0, 1)

• c ≈ m/n: size of matrix
• hold out proportion is constant: r/m = s/n = θ

I True rank k=1: Ym×n = κum×1vn×1
T + Zm×n

• um×1 and vn×1 are unit vectors

• root mean square of noise: (E [Z 2
ij ])

1/2
= 1

• root mean square of signal: (E (κuvT )2/mn)1/2 = κ
√

mn
• Assume κ2 = δ

√
mn, δ > 1 represents the strength of signal.
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Choice of hold out portion

I Smaller aspect ratio (c ≈ m/n closer to 1) is advantageous.
I Larger hold out portion θ will favor selection of lower rank.

• Small holdouts is more prone to overfitting.
• Large holdouts is more prone to underfitting.

I In practice, the authors recommend a (2× 2)− fold or
(3× 3)− fold BCV. (more about this next time...)
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Summary

I Lower rank approximation to the observed data can be
obtained via truncated SVD.

I Current practice of choice of k is arbitrary

I Bi-cross-validation(BCV) is a reasonable generalization of
cross-validation to this unsupervised learning setting.

I Some theoretical justifications for BCV is presented, and more
needs to be discovered.

I Choice of holdout size is still an open problem.
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Coming next...

I Simulation results

I Real data application

I Discussion
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Questions?
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