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Problem

» Problem: lower-rank approximation to matrix Y

Y=M+E

° Y c Ran’M c Ran
o k = rank(M) < rank(Y) = min(m, n)

» Motivation: factor analysis
Y=BF+E

» What is special: unsupervised learning
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Given k (rank of M): Truncated SVD

» Eckart and Young(1936): Given rank(M) = k, the following
truncated SVD minimized square error ||Y — M||3
£

F3

Figure: Comparison of SVD and truncated SVD !

e Question: How to choose k?

!Figure adapted from http://web.eecs.utk.edu/ berry/Isi++/node8.html
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How to choose k?

» Usual practice (Hoff(2007)): look for where the last large gap
or elbow appears in a plot of singular values

e Lack of numerical standards

» Cross validation: usual practice for supervised learning, as well
as providing numerical standards

» non-trivial under unsupervised learning settings
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Bi-cross-validation

» Usual cross-validation leaves rows out
° Y _ Yl'r.l n
Y(r+1):m,1:n
e doesn’t work herel

» Bi-cross-validation (BCV): leaves out rows and columns
simultaneously

A B
.Yan_<C D)

e example: test scores from 100 students on 10 academic fields

e Most previous authors consider leaving out a 1 X 1 matrix
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Eastment and Krzanowski (1982)

» Recall from SVD:

A B
o Youn= Um><nDn><nVr71—><n = cC D

e U represents row information, and V represents column
information.

» Eastment and Krzanowski (1982):
hd (C, D)(m—l)xn = Ul(m—l)XnDlnan]-,Z—xn ~
Ul(mfl)kalkxk
B
. ( D ) = U2 (0-1)D2(n-1)x(--1)V2(,_1)x(n_1)
mx(n—1)
< =T
D2kaV2k><k
T 7T
> Unxn ® U250 (n-1) ® U2mxie, VL~ VI = V1,

nxn nxn
» Dyxk = /D1y D2yx

» A1><1 = \A/[l,l]
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Eastment and Krzanowski (1982)

» Best known method up to date (cited by 237 up to date)
» Critiques
e cross-validation errors decrease monotonically with k

e some awkward adjustments based on estimated degree of
freedom are used in practice.

e sign for singular vectors u,-,v,-T is not determined
e Linbo: lack of theoretical justification
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Bi-cross-validation (BCV)

» Motivation: cross-validation of principal component regression
(PCR) 2
» First studied by Gabriel (2002) in 1 x 1 case.

» avoids drawbacks of Eastment and Krzanowski (1982)

2This is a made-up motivation by the presenter.
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Bi-cross-validation (BCV)

Y — < Al:r,l:s B1:r,(s—|—1):n >
Cirv1)ymis  Dirsiymy(s+1)n

» Fit a principal component regression of C on D:

A

B=(DbW)-c
e D) js the best rank-k approximation to D
e "-" is the Moore-Penrose generalized inverse

» Get "estimate” of A by Bf3
» Do this for different hold-out portion A

BCV (k ZZIIA i.J) = B(i,/)(D(i,))~ C(i. )IIF

i=1 j=1

» Counterintuitive: Use the best rank for D as the best rank for
Y.
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Properties

» Theoretical properties (" Model Selection Consistency”):

e Self-consistency property
e Pure Gaussian noise (true k=0)

e Asymptotically: E[BCV(1)] > E[BCV/(0)]
e Rank 1 plus Gaussian noise (true k=1)

e Asymptotically: E[BCV/(1)] < E[BCV/(0)] under some
conditions

» Empirical properties (next time...)
e Cross-validation error is U-shape with respect to k
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Model Selection Consistency

» Self-consistency property
A B
*Y=lco
e Conditions: rank(Y)=rank(D)=k
e Conclusion: A— B(D¥)"C=A-BD=C=0
» Eastment and Krzanowski (1982) generally doesn’t have such
property
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Model Selection Consistency

» True rank k=0: Yxn = Omxn + Zmxn

o Z; M N(0,1)

e ¢~ m/n: size of matrix

e hold out proportion is constant: r/m=s/n=10
> True rank k=1: Yimxn = KUmx1Vaxi ' + Zmxn

® Un,x1 and v,y are unit vectors

e root mean square of noise: (E[Z2])1/2

e root mean square of signal: (E(kuv')? /mn)l/2 = Kym
e Assume k2 = §y/mn,§ > 1 represents the strength of sngnal.
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Choice of hold out portion

TABLE 1
This table summarizes expected cross-validated squared errors from the text. The lower
right eniry is conservative as described in the text. The value n€ (1/2,1) represenis o
lower bound on the proportion not held out, for each singular vector v and v. The value 8
iz an assumed common value for v/m and s/n and 8 >1 is a measure of signal strength

E(BCV(k)) — mn True k=0 Truek=1
Fitted k=0 0 d/mn
Fitted k =1 e Byt Vmn(8(1—1/nm)? + ¢ + 732 +1/6)

» Smaller aspect ratio (c &~ m/n closer to 1) is advantageous.
» Larger hold out portion 8 will favor selection of lower rank.
e Small holdouts is more prone to overfitting.
e Large holdouts is more prone to underfitting.
» In practice, the authors recommend a (2 x 2) — fold or
(3 x 3) — fold BCV. (more about this next time...)
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Summary

» Lower rank approximation to the observed data can be
obtained via truncated SVD.

» Current practice of choice of k is arbitrary

» Bi-cross-validation(BCV) is a reasonable generalization of
cross-validation to this unsupervised learning setting.

» Some theoretical justifications for BCV is presented, and more
needs to be discovered.

» Choice of holdout size is still an open problem.
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Coming next...

» Simulation results
» Real data application

» Discussion
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Questions?
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