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Introduction: Statistical modeling *

» Statistical model: Y =@ + E
e Y: Observed data, potentially a matrix
(e.g. subject x academic fields)
e ©: Mean model: a fixed pattern we want to recover
e E: Covariance Model: E[E] =0
» Mean model

1. Regression model: ® = O(B, X), X observed (given)

» Supervised learning problem

'From Peter Hoff’s notes on CSSS 594
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Introduction: Statistical modeling *

» Statistical model: Y = © + E

e Y: Observed data, potentially a matrix

(e.g. subject x academic fields)
e ©: Mean model: a fixed pattern we want to recover
e E: Covariance Model: E[E] =0

» Mean model
1. Regression model: ® = O(B, X), X observed (given)

» Supervised learning problem
2. Rank/factor model: @ = O(B, F), F latent

» Unsupervised learning problem

'From Peter Hoff’s notes on CSSS 594
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Example 2

» QOutcome: examination scores from each of 10 different
academic fields of 1000 students

» Latent covariates: "verbal intelligence”, " mathematical
intelligence”, "EQ", etc.

» Build a model with the latent covariates

Y =BF +E

° Y c Ran’M c Ran
e k = rank(M) = rank(BF), rank(Y) = min(m, n)
e we would want rank(BF) < rank(Y)

2From wikipedia item on factor analysis
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Example 2

» QOutcome: examination scores from each of 10 different
academic fields of 1000 students

» Latent covariates: "verbal intelligence”, " mathematical
intelligence”, "EQ", etc.

» Build a model with the latent covariates

Y =BF +E

Y e R™*" M € R™"

k = rank(M) = rank(BF), rank(Y) = min(m, n)
we would want rank(BF) < rank(Y)
Mathematically: lower-rank approximation to Y

2From wikipedia item on factor analysis
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Estimation method: Truncated SVD

» Singular Value Decomposition (SVD):
Y=UDV' =) duyv
i=1
edi>db>-->d, >0

» Eckart and Young(1936): Given rank(BF) = k, the following
truncated SVD minimized square error ||Y — BF||2

k
BF = diuiv" = UD V)]
i=1
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Estimation method: Truncated SVD

® Yoo = UnmsnDoxnVI & ULy kD1 V1],

i£

3

Figure: Comparison of SVD and truncated SVD 3

3Figure adapted from http://web.eecs.utk.edu/ berry/Isi++ /node8.html
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Estimation method: Truncated SVD

® Yoo = UnmsnDoxnVI & ULy kD1 V1],

i£

3

Figure: Comparison of SVD and truncated SVD 3
e Question: How to choose k?

3Figure adapted from http://web.eecs.utk.edu/ berry/Isi++ /node8.html

DA
5/23



How to choose k?

Square error ||Y — BF||Z
e Prone to overfitting

» Usual practice (Hoff(2007)): look for where the last large gap
or elbow appears in a plot of singular values

e Lack of numerical standards
» F-test(Dias and Krzanowski(2003)): not reliable here.
» Wold(1978) : add terms until the residual standard error
matches the noise level - requires knowledge of noise level

» Cross validation: usual practice for supervised learning, as well
as providing numerical standards

» non-trivial under unsupervised learning settings

v

6/23



Cross validation under unsupervised learning

» "The" way to choose k if we know how to do it, especially for
prediction purpose
» We don’t know covariates as in regression/supervised learning
setting, then what can we do?
[ ]
Y mxn = XmXpoXn + Emxn

e 10-fold cross-validation: divide the rows of Y and X in to 10
parts, use 9 of them as training sample, and the other 1 as test
sample.

Yl:r.l:n Xl:r.l: >
Y.X) = L
( ) ( Y(r+1):m,1:n X(r+1):m,1:p

e Repeat the process for other choices of test sample.

» What can we do without knowing X?
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Bi-cross-validation to select k: basic idea

» Cross-validation withhold some rows of response.

(Y,X) _ < Yl:r,l:n Xl:r,l:p )
Y(r-i-l):m,l:n X(r—i—l):n,l:p

» Bi-cross-validation (BCV): leaves out rows and columns
simultaneously.

Yi Ya Y7
« You=| Y2 Y5 Y —<é g)
Y3 Ys Yo
e Try to predict A (withheld part) with B, C, D (observed part)
e For each left-out portion Y;,i =1,---,9, for each k, define
BCVi(k)
e Repeat this process for Y1, Y2, -, Yy, and take the average:

1
BCV(k) =5 S0 BCVi(k).
o Select k that minimize BCV/ (k)
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Sit back, relax, and think...

A B
>Ym><n_<C D)

e Try to predict A (withheld part) with B, C, D (observed part)

» Go back to regression setting (Principal component
regression)

(Y,X) _ < YYl:r,l:n Xxl:r,l:p >
(r+1):m,1:n (r+1):n,1:p

e Yi,1n= X1:r,1:p(x(r+1):n,1;p(k))_Y(r+1):m,1:n
e Math fact: X~Y = (X" X)Xy
° th the prediction error in Frobenius norm:
||Y1:r,1:n - Yl:r,l:n”?—‘
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Method: It is straightforward!

A B
>Ym><n:<c D>

e A=c(D¥)-B X
e Get the prediction error in Frobenius norm: ||A — A||%

» Turns out that it gives reasonable U-shape error curve in
practice.

» There are also some theoretical properties for this estimator
proved in this paper.

» Historical note: first proposed by Gabriel (2002) in 1 x 1 case.
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Wait a minute..

» My concerns
e We are using best rank approximation to D as best rank
approximation to Y7
> underestimating?
» will never recover the truth if the best rank is larger than
% *x min(m, n)

e We call rows of Y "subjects”, columns of Y "response” (in
both the motivating example and the prediction procedure)
» assume rows are independent, while columns are correlated?
» Y could have been transposable! (Example: trade data from
one country to another)
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Other methods exists..

» Eastment and Krzanowski (1982)

» Best known method up to date (cited by 237 up to date)
» Critiques
e cross-validation errors decrease monotonically with k

e some awkward adjustments based on estimated degree of
freedom are used in practice.

e sign for singular vectors u;, v/ is not determined
e Linbo: lack of theoretical justification
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Properties of our BCV estimator

» Theoretical properties (" Model Selection Consistency”):

e Self-consistency property
e Pure Gaussian noise (true k=0)

e Asymptotically: E[BCV(1)] > E[BCV/(0)]
e Rank 1 plus Gaussian noise (true k=1)

e Asymptotically: E[BCV/(1)] < E[BCV/(0)] under some
conditions

» Empirical properties
e Cross-validation error is U-shape with respect to k
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Model Selection Consistency

» Self-consistency property
A B
*Y=lco
e Conditions: rank(Y)=rank(D)=k
e Conclusion: A— B(D¥)"C=A-BD=C=0
» Eastment and Krzanowski (1982) generally doesn’t have such
property
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Model Selection Consistency

» True rank k=0: Yxn = Omxn + Zmxn

o Z; ® N(0,1)

e ¢~ m/n: size of matrix

e hold out proportion is constant: r/m=s/n=0
> True rank k=1 Ymxn = KUmx1Vaxi ' + Zmxn

® U,y and v,y are unit vectors

e root mean square of noise: (E[Z2])1/2

e root mean square of signal: (E(kuv')? /mn)l/2 = Kym
e Assume k2 = §y/mn,§ > 1 represents the strength of sngnal.
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Choice of hold out portion

» Smaller aspect ratio (c &~ m/n closer to 1) is advantageous.

» Larger hold out portion 6 will favor selection of lower rank.

e Small holdouts is more prone to overfitting.
e Large holdouts is more prone to underfitting.

» In practice, the authors recommend a (2 x 2) — fold or
(3 x 3) — fold BCV.
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Simulation!

» Data Generation
e Y=M+E
e Generate M to have pre-specified singular values
TI2T 2 2 Tmin(m,n)
e Two patterns for singular values
1. Binary pattern: 7 o< (1,1,---,1,0,---,0) ‘
2. Geometric pattern: 7 o< (1,1/2,1/4,-- -, 1/2’"’"(’"’"))
> k°Pt = argmin || Y ) — M|
» Small/large simulation set-up

1. small: m=50 and n=40
2. large: m=n=1000
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Simulation - methods

1. Our BCV / Gabriel method
2. Eastment-Krzanowski
3. Bai and Ng (2002)'s BIC method

In these, the estimate k is the minimizer of

_ S(k) _ 2 m-+n mn
(7.1) BIC (k) =log(|| X" — X|[*) + k=———log —
(7.2) BIC; (k) = log([| X — X2 )+k 1g02 or
7.3 Cs(k) = log (| X® — x 2 k’gc
(7.3) BIC;(k) = log([|X™ — X||°) + k—Z5—,

over k, where ¢ = ¢(m,n) = min(y/m,/n).
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Shape of curve

Mean square error vs rank: binary and geometric cases
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Fic. 2. This figure shows the results of Gabriel and Eastment—Krzanowski 1 x 1 hold out
cross-validation on some 50 by 40 matriz examples described in the text. In the left panel
the signal matriz has 10 positive and equal singular values and 30 zero singular values. The
dotted red curves show the true mean square error per matriz element ||X”°) — p||*/(mn)
from 10 realizations. The solid red curve is their average. Similarly, the black curves show
the naive error | X® — X|[2/(mn). The green curves show the results from Eastmen-
t-Krzanowski style cross-validation. The blue curves show Gabriel style cross-validation.
The right panel shows a simil imulation for singular values that decay geometrically. In
both cases the mean square signal was egual to the expected mean square noise.
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"Small” sample performace

Squared error per element
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Geometric singular values

Fi1c. 3. This figure shows the mean square error, per element, for all the methods ap-
plied to the 50 x 40 example. The case with geometrically decaying singular values is on
the horizontal azxis, and the binary case with ten equal nonzero singular values is on the
vertical azis. Gabriel’s method and our generalizations are shown in blue, (generalized)
Eastment—Krzanowski is in green, the oracle is red, and Bai and Ng’s BIC estimators are
in black. There are horizontal and vertical reference lines for methods that always pick —
k=1 or k=20. The cluster of blue points in the lower left corner is discussed in the text.




"Large” sample performace

BCV relative errors versus rank
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Fic. 4. This figure shows the BCV errors for the 1000 x 1000 ezamples with equal signal
and noise magnitude, as described in the text. The left panel shows the results when there
are 50 positive and equal singular values. The horizontal axis is fitted rank, ranging from
0 to 100. The vertical axis depicts square errors, in each case relative to the squared error
for rank k =0. There are 10 nearly identical red curves showing the itrue error in 10
realizations. The black curves show the naive error. Blue curves from dark to light show
BCV holdouts of 200 x 200, 500 x 500 and 800 x 800. The right panel shows the results
for a geometric pattern in the singular values.




Summary

» Factor model is a popular alternative to regression model.

» Lower rank approximation to the observed data can be
obtained via truncated SVD.

» Current practice of choice of k is arbitrary.
» Problem: cross-validation for k in unsupervised learning.

» Approach: mimic cross-validation for principal component
regression, the authors come up with a
bi-cross-validation(BCV) method.

» Some theoretical justifications for BCV are presented, and
simulation studies show that the estimator is good overall.

» More can be done above this!
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Questions?




