Design and Analysis of Stepped Wedge Cluster Randomized Trials

Michael A. Hussey & James P. Hughes

Biost 572 Navneet R. Hakhu

April 18, 2013

Randomized Trial (RT)

Randomize (independent) subjects to intervention arm
– Q: Why bother?

Criteria for assessing intervention

- Safety
- Efficacy
- Effectiveness
- Q: What is a different type of RT?

Cluster Randomized Trial (CRT)

Randomize (independent) clusters to intervention arm
Subjects within clusters are correlated

• Q: Why are CRTs useful?

Partner Notification

• Public health authorities contact sex partner

- Of potential exposure to sexually transmitted infection (STI)
- To seek treatment
- Drawback: Implementation expensive
- Alternative: Patient Delivered Partner Therapy
 - Infected patient brings treatment to sex partner
 - Drugs or drug vouchers

Expedited Partner Therapy (EPT)

- Individually randomized trial [Golden et al., 2005]
 - 1998 to 2003 in King County, WA
 - Notification strategies (Intervention arms)
 - Patient delivered partner therapy, referred to as EPT
 - Standard partner notification (control)
 - Goal: To compare effectiveness of notification strategies for treating chlamydia and/or gonorrhea
 - Primary outcome: "presence of persistent or recurrent infection in the original index patient 3 – 19 weeks after treatment"
 - Study results
 - Significantly increased proportion of partners treated
 - Decreased risk of infection in patients
- Q: Successful trial, but are we done?

Limitation of EPT

- Q: What about all the other counties in WA state?
 King county is not representative of every county in WA
- Goal for WA: To implement EPT in every county
 Q: How?

Motivation for CRT

Individually randomized trial completed

- But only for one county (King)

New trial

- Counties represent clusters
- Q: What kind of CRT should we use?

Possible CRT Designs

- Parallel
- Crossover
- Stepped wedge

	<u>Parallel</u>			Crossover					Stepped Wedge					
	Time			Time					Time					
Cluster		1	Cluster		1	2			1	2	3	4	5	
	1	1		1	1	0		1	0	1	1	1	1	
	2	1		2	1	0	Cluster	2	0	0	1	1	1	
	3	0		3	0	1		3	0	0	0	1	1	
	4	0		4	0	1		4	0	0	0	0	1	

• Q: Which design is **best** from a **scientific** perspective?

• Q: Which design is **best** from a **statistical** perspective?

Comments on Designs

 Some argue that stepped wedge design is only preferable to no randomized trial [Kotz et al., 2012]

- Takes longer
- Stepped wedge only has higher power because more data than parallel
- Hussey and Hughes
 - Stepped wedge is not a design to always implement
 - But represents a viable option in some situations

Scientific Perspective

- Criteria for best design
 - Ethical
 - Logistical
 - Feasible

Statistical Perspective

Criteria for best design

- Power
 - Probability of rejecting null when alternative is true
 - For stepped wedge: Consider different effect sizes (i.e., number of clusters randomized at each time point
- Coefficient of Variation (CV)
 - Ratio of between-cluster standard deviation over mean prevalence
- Sample sizes within clusters
 - Equal versus unequal

Analysis of CRT

Population-level approach

- Generalized Estimating Equations (GEE)

Individual-level approaches

- Linear Mixed Models (LMM)
- Generalized Linear Mixed Models (GLMM)

Some considerations

- Known versus unknown variance components
- Normal versus non-normal data

Summary

Motivated CRTs

- Expedited Partner Therapy individually randomized trial
- Three designs: parallel, crossover, stepped wedge
- After scientific consideration, we want to consider statistical aspects of the three designs
 - Power
 - CV (prevalence estimated from cross-sectional sampling)
- Next steps:
 - Work through the derivations/computation to assess CRTs
 - Focusing on Power calculations
 - Extension: Compare Power for parallel versus stepped wedge
 - More comparable sample sizes
 - Different time steps