Design and Analysis of Stepped Wedge Cluster Randomized Trials

Michael A. Hussey & James P. Hughes

Biost 572 Navneet R. Hakhu

May 7, 2013

Cluster Randomized Trial (CRT)

Randomize (independent) clusters to intervention arm
Subjects within clusters are correlated

• Q: Why are CRTs useful?

Partner Notification

• Public health authorities contact sex partner

- Of potential exposure to sexually transmitted infection (STI)
- To seek treatment
- Drawback: Implementation expensive
- Alternative: Patient Delivered Partner Therapy
 - Infected patient brings treatment to sex partner
 - Drugs or drug vouchers

Expedited Partner Therapy (EPT)

- Individually randomized trial [Golden et al., 2005]
 - 1998 to 2003 in King County, WA
 - Notification strategies (Intervention arms)
 - Patient delivered partner therapy, referred to as EPT
 - Standard partner notification (control)
 - Goal: To compare effectiveness of notification strategies for treating chlamydia and/or gonorrhea
 - Primary outcome: "presence of persistent or recurrent infection in the original index patient 3 – 19 weeks after treatment"
 - Study results
 - Significantly increased proportion of partners treated
 - Decreased risk of infection in patients
- Q: Successful trial, but are we done?

Limitation of EPT

- Q: What about all the other counties in WA state?
 King county is not representative of every county in WA
- Goal for WA: To implement EPT in every county
 Q: How?

Motivation for CRT

Individually randomized trial completed

- But only for one county (King)

New trial

- Counties represent clusters
- Q: What kind of CRT should we use?

Possible CRT Designs

Parallel		Time		Crossover		Time		Stepped		Time					
		1				1	2	Wedge		1	2	3	4	5	
Cluster	1	1		Cluster	1	1	0	Cluster	1	0	1	1	1	1	
	2	1			2	1	0		2	0	0	1	1	1	
	3	0			3	0	1		3	0	0	0	1	1	
	4	0			4	0	1		4	0	0	0	0	1	

• Q: Which design is **best** from a **scientific** perspective?

• Q: Which design is **best** from a **statistical** perspective?

Statistical Perspective

Criteria for best design

- Power
 - Probability of rejecting null when alternative is true
 - For stepped wedge: Consider different effect sizes (i.e., number of clusters randomized at each time point
- Coefficient of Variation (CV)
 - Ratio of between-cluster standard deviation over mean prevalence
- Sample sizes within clusters
 - Equal versus unequal

Statistical Model: Individual-level

$$Y_{ijk} = \mu_{ij} + e_{ijk}$$

= $(\mu + \alpha_i + \beta_j + X_{ij}\theta) + e_{ijk}$

- -i = 1, ..., I (number of clusters) -j = 1, ..., T (number of time intervals) -k = 1, ..., N (number of individuals within cluster *i* at time *j*)
- $-\mu$: mean prevalence
- $\alpha_i \sim N(0, \tau^2)$: random effect for cluster
- β_j : fixed effect for time; $\beta_T = 0$ (for identifiability)
- $X_{ij} = 1_{[cluster \ i \ receiving \ treatement \ at \ time \ j]}$
- $-\theta$: treatment effect
- $e_{ijk} \sim_{iid} N(0, \sigma_e^2)$

$$- Var(Y_{ijk}) = \tau^2 + \sigma_e^2$$

Statistical Model: Cluster-level

$$Y_{ij+} = \mu_{ij} + e_{ij+}$$
$$= (\mu + \alpha_i + \beta_j + X_{ij}\theta) + \left(\sum_{k=1}^N e_{ijk}\right)$$

-
$$e_{ij+} \sim_{iid} N(0, \sigma^2)$$
 where $\sigma^2 = \frac{\sigma_e^2}{N}$

$$-Var(Y_{ij+}) = \tau^{2} + \sigma^{2} = \dots = \frac{\tau^{2} + \sigma_{e}^{2}}{N} [1 + (N - 1)\rho]$$

 $-\rho \equiv Corr(Y_{ijk}, Y_{ij'k'}) = \frac{\tau^2}{\tau^2 + \sigma_e^2} \neq 0 \text{ (intraclass correlation)}$

- $Cov(Y_{ijk}, Y_{ij'k'}) = \tau^2$

Predictor of Interest

Parallel	Time	Crossove	er	Time		Stepped		Time					
	1				1 2		Wedge			2	3	4	5
Cluster 1	1	Cluster	1	1	0		Cluster	1	0	1	1	1	1
2	1		2	1	0			2	0	0	1	1	1
3	0		3	0	1			3	0	0	0	1	1
4	0		4	0	1			4	0	0	0	0	1
$X_{ij} =$					0 0 1 1					0(0(0(111 011 001	1 1)1_	
(I,T) =		(4, 2)					(4,5)						

(Approximate) Statistical Power

• Testing $H_0: \theta = 0$ versus $H_1: \theta = \theta_A$

$$Pwr(\theta_A) = \Phi\left(\frac{\theta_A}{\sqrt{Var(\hat{\theta})}} - z_{1-\alpha/2}\right)$$

- Φ : Cumulative density function of N(0,1)

-
$$z_{1-\alpha/2}$$
: $\left(1-\frac{\alpha}{2}\right)$ -quantile of $N(0,1)$

- $Var(\hat{\theta})$: Estimated from weighted least squares (WLS)

Estimated Variance from WLS

• Z: Design matrix, $IT \times (T + 1)$

• $\eta = (\mu, \beta_1, ..., \beta_{T-1}, \theta)$: parameter vector, $(T + 1) \times 1$

• $V = \text{diag}(V_1, \dots, V_I)$: block diagonal matrix, $IT \times IT$

$$V_{i} = \begin{bmatrix} \tau^{2} + \sigma_{e}^{2} & \tau^{2} & \cdots & \tau^{2} \\ \tau^{2} & \ddots & \tau^{2} & \vdots \\ \vdots & \tau^{2} & \ddots & \tau^{2} \\ \tau^{2} & \cdots & \tau^{2} & \tau^{2} + \sigma_{e}^{2} \end{bmatrix}_{T \times T}$$

Estimated Variance from WLS

- Z : Design matrix, $IT \times (T + 1)$
- $\hat{\eta} = (Z^T V^{-1} Z)^{-1} Z^T V^{-1} Y$: WLS estimate

 $-\hat{\theta}$: (T + 1) entry of $\hat{\eta}$

• $Cov(\hat{\eta}) = (Z^T V^{-1} Z)^{-1} : (T+1) \times (T+1)$ matrix - $Var(\hat{\theta}) : (T+1) \times (T+1)$ entry of $Cov(\hat{\eta})$

Analysis of CRT

Population-level approach

- Generalized Estimating Equations (GEE)

- Individual-level approaches
 - Linear Mixed Models (LMM)
 - Generalized Linear Mixed Models (GLMM)
- Some considerations
 - Known versus unknown variance components
 - Normal versus non-normal data
- Goal: Compare power from GEE, LMM, GLMM

Simulation Setup

Generate data from the model

$$Y_{ijk} = \mu + \alpha_i + \beta_j + X_{ij}\theta + e_{ijk}$$

- $-\mu = 0.05$
- $-\tau^2 = 0.000225$
- $\sigma_e^2 = \mu (1 \mu)/N$
- $\theta_A = 0.25$
- Problem occurs when trying to generate binomial data have negative values
- When not assuming binary response, estimated SE is very small → power of 1, which is not correct

Summary

- Motivated CRTs
 - Expedited Partner Therapy individually randomized trial
 - Three designs: parallel, crossover, stepped wedge
 - After scientific consideration, we want to consider statistical aspects of the three designs
 - Power
 - CV (prevalence estimated from cross-sectional sampling)
- Next steps:
 - Figure out problems with simulations
 - Focusing on Power calculations for different values of
 - Treatment effect
 - CV
 - Extension: Compare Power for parallel versus stepped wedge
 - More comparable sample sizes
 - Different time steps