Design and Analysis of Stepped Wedge Cluster Randomized Trials

Michael A. Hussey & James P. Hughes

Biost 572
Navneet R. Hakhu

June 6, 2013
Randomized Trial (RT)

- Randomize (independent) **subjects** to intervention arm
 - **Q**: Why bother?

- **Criteria** for assessing intervention
 - Safety
 - Efficacy
 - Effectiveness

- **Q**: What is a different type of RT?
Cluster Randomized Trial (CRT)

- Randomize (independent) clusters to intervention arm
 - Subjects within clusters are correlated

- **Q**: Why are CRTs useful?
Examples of CRTs

• **Goal:** Administer intervention on *cluster-specific* basis

• **Sommer et al.** (1986)
 - Vitamin A supplementation and childhood mortality
 - 450 villages in Indonesia randomized
 - **Reason:** Individual randomization not feasible

• **Zucker et al.** (1995)
 - Child and adolescent trial for cardiovascular health (CATCH)
 - **Goal:** Prevention
 - Schools randomized to intervention
 - **Reason:** Implementation on school-wide basis
Partner Notification

• **Public health authorities** contact sex partner
 - Of potential exposure to sexually transmitted infection (STI)
 - To seek treatment
 - **Drawback**: Implementation expensive

• **Alternative**: Patient Delivered Partner Therapy
 - **Infected patient** brings treatment to sex partner
 • Drugs or drug vouchers
Expedited Partner Therapy (EPT)

• Individually randomized trial [Golden et al., 2005]
 − 1998 to 2003 in King County, WA
 − Notification strategies (Intervention arms)
 • Patient delivered partner therapy, referred to as EPT
 • Standard partner notification (control)
 − **Goal:** To compare **effectiveness** of notification strategies for treating chlamydia and/or gonorrhea
 • **Primary outcome:** “presence of persistent or recurrent infection in the original index patient 3 – 19 weeks after treatment”
 − Study results
 • Significantly **increased proportion** of partners treated
 • **Decreased risk** of infection in patients

• **Q:** Successful trial, but are we done?
Limitation of EPT

• **Q:** What about all the other counties in WA state?
 - King county is *not representative* of every county in WA

• **Goal for WA:** To implement EPT in *every county*
 - **Q:** How?

• **Comments**
 - Implementation of EPT on a *county-wide* basis motivates need for CRT
 - However, one can view EPT as each *individual’s choice*
Motivation for CRT

• Individually randomized trial completed
 – But only for one county (King)

• New trial
 – Counties represent clusters
 – Q: What kind of CRT should we use?
Possible CRT Designs

<table>
<thead>
<tr>
<th>Parallel</th>
<th>Time</th>
<th>Crossover</th>
<th>Time</th>
<th>Stepped Wedge</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Cluster</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>Cluster</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>1</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Comments on Designs

• Some argue that stepped wedge design is only preferable to no randomized trial [Kotz et al., 2012]
 - Takes longer
 - Stepped wedge only has higher power because more data than parallel

• Hussey and Hughes
 - Stepped wedge is not a design to always implement
 - But represents a viable option in some situations
Scientific Perspective

- Criteria for best design
 - Ethical
 - Logistical
 - Feasible
Statistical Perspective

• Criteria for best design
 – Power
 • Probability of rejecting null when alternative is true
 • For stepped wedge: Consider different effect sizes (i.e., number of clusters randomized at each time point)
 – Coefficient of Variation (CV)
 • Ratio of between-cluster standard deviation over mean prevalence
 \[CV = \frac{\tau}{\mu} \]
 • Intraclass correlation
 \[\rho = \frac{\tau^2}{\tau^2 + \sigma^2} \neq 0 \]
 where \(\sigma^2 = \mu (1 - \mu) \)
Statistical Summary Measure

• Relative risk (RR)

\[RR = \frac{\mu + \theta_A}{\mu} \]

- \(\mu \): mean prevalence of outcome in control arm
- \(\mu + \theta_A \): effect in treatment arm
- \(\theta_A < 0 \): we expect benefit in treatment arm (RR < 1)

• Note: With small prevalence \(\mu \), OR \(\approx \) RR
Generating Data: Individual-level

\[Y_{ijk} \sim \text{Binomial}(1, \mu_{ij}) \]

\[g(\mu_{ij}) = \beta_0 + X_{ij}\beta_1 + \alpha_i \]

\[\alpha_i \sim \text{Normal}(0, \tau^2) \]

- \(i = 1, \ldots, I \) (clusters)
- \(j = 1, \ldots, T \) (time intervals)
- \(k = 1, \ldots, N \) (individuals within cluster \(i \) at time \(j \))
- \(g(\cdot) \): link function (either identity or logit)
- \(X_{ij} \): indicator of receiving treatment
- \(\beta_1 \): treatment effect
- \(\alpha_i \): random effect for cluster
Choice of Scale

- β_0 and β_1 are different for identity versus logit link

- Generated random effects (α_i) and probabilities (μ_{ij}) are also different
Generating Data: Cluster-level

\[\bar{Y}_{ij} = \frac{1}{N} \sum_{k=1}^{N} Y_{ijk} \]

- \(i = 1, \ldots, I \) (clusters)
- \(j = 1, \ldots, T \) (time intervals)
- \(k = 1, \ldots, N \) (individuals within cluster \(i \) at time \(j \))
Predictor of Interest

<table>
<thead>
<tr>
<th>Parallel</th>
<th>Time</th>
<th>Crossover</th>
<th>Time</th>
<th>Stepped Wedge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster</td>
<td>1</td>
<td>Cluster</td>
<td>1</td>
<td>Cluster</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\[X_{ij} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \]

\[(I, T) = (4, 1) \]
(Approximate) Statistical Power

- Testing \(H_0 : \theta = 0 \) versus \(H_1 : \theta = \theta_A \)

\[
Pwr(\theta_A) = \Phi \left(\frac{\theta_A}{\sqrt{Var(\hat{\theta})}} - z_{1-\alpha/2} \right)
\]

- \(\Phi \) : Cumulative density function of \(N(0,1) \)

- \(z_{1-\alpha/2} \) : \(\left(1 - \frac{\alpha}{2} \right) \)-quantile of \(N(0,1) \)
Variance Formula

\[
\text{Var}(\hat{\theta}) = \frac{I\sigma^2(\sigma^2 + T\tau^2)}{(IU - W)\sigma^2 + (U^2 + ITU - TW - IV)\tau^2}
\]

- \(U = \sum_{ij} X_{ij} \)
- \(W = \sum_j (\sum_i X_{ij})^2 \)
- \(V = \sum_i (\sum_j X_{ij})^2 \)
- \(\sigma^2 = \mu (1 - \mu) \)
Analysis of CRT

• Cluster-level
 - Linear Mixed Models (LMM)

• Individual-level
 - Generalized Estimating Equations (GEE)
 - Generalized Linear Mixed Models (GLMM)

• Goal: Compare power from LMM, GEE, GLMM
Simulation Study Design

<table>
<thead>
<tr>
<th>Stepped Wedge</th>
<th>Time</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* \(N = 100 \) individuals in each cluster (i.e., 100 observations for each cell)

* \(T = 5 \) time intervals

* \(I = 24 \) clusters
Simulation Setup: Cluster-level

\[Y_{ijk} \sim \text{Binomial}(1, \mu_{ij}) \]

\[\mu_{ij} = \beta_0 + X_{ij} \beta_1 + \alpha_i \]

\[\alpha_i \sim \text{Normal}(0, \tau^2) \]

\[\bar{Y}_{ij} = \frac{1}{N} \sum_{k=1}^{N} Y_{ijk} \]

- \(\beta_0 = \mu = 0.05 \)
- \(\tau = 0.015 \)
- \(\text{RR} = \{1.0, 0.7, 0.6, 0.5\} \)
 \[\rightarrow \beta_1 = \theta_A = \{0, -0.015, -0.020, -0.025\} \]
Simulation Setup: Individual-level

\[Y_{ijk} \sim \text{Binomial}(1, \mu_{ij}) \]

\[\text{logit}(\mu_{ij}) = \beta_0 + X_{ij} \beta_1 + \alpha_i \]

\[\alpha_i^* \sim \text{Normal}(0, \tau^*^2) \]

- \(\mu = 0.05 \)
- \(\tau = 0.015 \)
- \(\text{RR} = \{1.0, 0.7, 0.6, 0.5\} \)
 \(\Rightarrow \theta_A = \{0, -0.015, -0.020, -0.025\} \)
- \(\beta_0 = \text{logit}(\mu) \)
- \(\beta_1 = \text{logit}(\mu + \theta_A) - \beta_0 \)
- \(\tau^* = \text{logit}(\mu + \tau) - \beta_0 \)
Simulation Model: Cluster-level

- **LMM** – `lme` versus both `lme` and `lmer`
 - Fixed effects
 - Intervention effect
 - Time interval
 - Random intercepts only
 - Cluster
 - (Gaussian family with identity link)
Simulation Models: Individual-level

• **GEE** – *gee*
 - Fixed effects
 • Intervention effect
 • Time interval
 - Grouped by cluster
 - Exchangeable correlation structure
 - Binomial family with logit link

• **GLMM** – *glmmPQL versus glmer*
 - Fixed effects
 • Intervention effect
 • Time interval
 - Random intercepts only
 • Cluster
 - Binomial family with logit link
Simulation Study: Results

<table>
<thead>
<tr>
<th>RR</th>
<th>Approximate Power</th>
<th>Cluster-level</th>
<th>Individual-level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LMM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paper</td>
<td>NRH*</td>
</tr>
<tr>
<td>1.0</td>
<td>0.050</td>
<td>0.056</td>
<td>0.056 (14)</td>
</tr>
<tr>
<td>0.7</td>
<td>0.412</td>
<td>0.697</td>
<td>0.690 (249)</td>
</tr>
<tr>
<td>0.6</td>
<td>0.659</td>
<td>0.907</td>
<td>0.891 (753)</td>
</tr>
<tr>
<td>0.5</td>
<td>0.951</td>
<td>0.988</td>
<td>0.985 (2154)</td>
</tr>
</tbody>
</table>

* includes number of re-sampled random intercepts to avoid negative probabilities
Critique

- Authors assume model with *same fixed treatment effect* for each cluster
 - Possible remedy: including random slopes

- Authors choose small tau to limit chances of *negative probabilities* for cluster-level approach
 - Q: What happens when CV ≠ 0.3 (with same \(\mu \))?
 - Resampling random effects might be a solution
 - Q: However, when *resampling* so often, do results have same interpretation?
 - (Not a normally distributed random effect)

- Authors do not compare power of stepped wedge to *parallel* design
 - Q: What would be a comparable way to compare designs?
Summary

- **CRTs**
 - **Motivation:** Implement on community-wide basis
 - **Three designs:** parallel, crossover, stepped wedge

- **Stepped Wedge**
 - Individually randomized trials **ideal**
 - Factoring in **ethical, logistical, and feasibility issues**
 - Phase IV effectiveness trials
 - Simulations of power based on Expedited Partner Therapy

- **Next steps**
 - Consider **random intercepts and slopes** to allow for different intervention effects for each cluster
 - Examine different sample sizes for each cluster
 - **Extension:** Compare Power for parallel versus stepped wedge
Thanks

- Jim Hughes
- Patrick Heagerty
- Jason Liang
- Everyone who provided feedback
- Everyone for listening