Nonparametric Heteroscedastic Transformation Regression Models for Skewed Data, with an Application to Health Care Costs
 Xiao-Hua Zhou, Huazhen Lin, Eric Johnson Journal of Royal Statistical Society Series B (2008)

Scott Coggeshall

April 25, 2013

Motivation: Health Care Cost Data

- Key component of risk assessment models used in insurance, health care industries
- Requires prediction of a patient's health care cost on the original scale
- Let Y be a patient's health care cost and \mathbf{X} be a vector of patient characteristics and previous health states.
- Goal: Given a patient's covariate vector \mathbf{x}, can we accurately predict $\mu(\mathbf{x})=E[Y \mid \mathbf{X}=\mathbf{x}]$?

Health Care Cost Data

Problems with health care cost data

- Skewed Distribution
- Heteroscedasticity
- "Spike" at Zero

Previous Approaches

Generalized Linear Models

- Prior research suggests estimates can be imprecise in this setting

Transformation Models

- Retransformation bias is a problem
- Usually require specification of transformation function

Proposed Model

$$
H(Y)=\mathbf{X}^{\prime} \boldsymbol{\beta}+\sigma\left(\mathbf{X}^{\prime} \gamma\right) \epsilon
$$

- $H(\cdot)$ is unknown, increasing function with $H\left(y_{0}\right)=0$ for some finite y_{0}
- $\sigma(\cdot)$ is known variance function
- $\boldsymbol{\beta}$ and γ are vectors of unknown parameters
- ϵ is error term with $E[\epsilon]=0, \operatorname{Var}[\epsilon]=1$, and unknown distribution function F
- How do we go from this model to a prediction $\hat{\mu}(\mathbf{x})$?

Smearing Estimator (Duan 1983)

- Let Y_{1}, \ldots, Y_{n} denote the untransformed response and $\nu_{i}=H\left(Y_{i}\right)$ denote the transformed response for some known function H
- Fit linear model on transformed scale:

$$
\nu_{i}=x_{i} \beta+\epsilon_{i}
$$

where $\epsilon_{i} \sim F$ are i.i.d. error terms with mean 0 and variance σ^{2}.

- To avoid retransformation bias, estimate $E\left[Y_{0} \mid X=x_{0}\right]$ with the smearing estimator based on the empirical CDF:

$$
\begin{aligned}
\hat{E}\left[Y_{0} \mid X=x_{0}\right] & =\int H^{-1}\left(x_{0} \hat{\beta}+\epsilon\right) \mathrm{d} \hat{F}(\epsilon) \\
& =\frac{1}{n} \sum_{i=1}^{n} H^{-1}\left(x_{0} \hat{\beta}+\hat{\epsilon}_{i}\right)
\end{aligned}
$$

Smearing Estimator cont.

- Issues with Duan's smearing estimator
- Transformation H must be specified
- Assumes homoscedasticity
- Project paper extends smearing estimator to case with unknown transformation and heteroscedasticity

Deriving Our Estimator: Some Notation

Recall the proposed model:

$$
H(Y)=\mathbf{X}^{\prime} \boldsymbol{\beta}+\sigma\left(\mathbf{X}^{\prime} \gamma\right) \epsilon
$$

- Let $\left(Y_{i}, \mathbf{X}_{i}\right), i=1, \ldots, n$ be a random sample that satisfies this model
- Let $Z_{1}=\mathbf{X}^{\prime} \boldsymbol{\beta}, Z_{2}=\mathbf{X}^{\prime} \boldsymbol{\gamma}, Z_{1 i}=\mathbf{X}_{\mathbf{i}}^{\prime} \boldsymbol{\beta}$, and $Z_{2 i}=\mathbf{X}_{\mathbf{i}}^{\prime} \gamma$
- Let $G\left(\cdot \mid z_{1}, z_{2}\right)$ be the CDF of $Y \mid Z_{1}=z_{1}, Z_{2}=z_{2}$ and $p(\cdot, \cdot)$ be the PDF of $\left(Z_{1}, Z_{2}\right)$
- Assume H, F, and G are differentiable with
- $h(y)=d H(y) / d y$
- $f(y)=d F(y) / d y$
- $p\left(y \mid z_{1}, z_{2}\right)=d G\left(y \mid z_{1}, z_{2}\right) / d y$
- $g_{j}\left(y \mid z_{1}, z_{2}\right)=d G\left(y \mid z_{1}, z_{2}\right) / d z_{j}, j=1,2$

Deriving Our Estimator

Some calculations (details omitted...) give us an expression for H(y):

$$
H(y)=-\int_{y_{0}}^{y} \frac{\sum_{i=1}^{n} p\left(u \mid Z_{1 i}, Z_{2 i}\right) p\left(Z_{1 i}, Z_{2 i}\right)}{\sum_{i=1}^{n} g_{1}\left(u \mid Z_{1 i}, Z_{2 i}\right) p\left(Z_{1 i}, Z_{2 i}\right)} d u
$$

- To estimate H we need estimates of $p\left(z_{1}, z_{2}\right), G\left(y \mid z_{1}, z_{2}\right)$, and derivatives of $G\left(y \mid z_{1}, z_{2}\right)$
- Estimate $G\left(y \mid z_{1}, z_{2}\right)$ with kernel estimator:

$$
\begin{aligned}
G_{n}\left(y \mid z_{1}, z_{2}\right)= & \frac{1}{n h_{1} h_{2} p_{n}\left(z_{1}, z_{2}\right)} \sum_{i=1}^{n} I\left(Y_{i} \leq y\right) K_{1}\left(\frac{Z_{1 i}-z_{1}}{h 1}\right) \\
& \times K_{2}\left(\frac{Z_{2 i}-z_{2}}{h_{2}}\right)
\end{aligned}
$$

- Estimate $p\left(z_{1}, z_{2}\right)$ with kernel density estimator:

$$
p_{n}\left(z_{1}, z_{2}\right)=\frac{1}{n h_{1} h_{2}} \sum_{i=1}^{n} K_{1}\left(\frac{Z_{1 i}-z_{1}}{h_{1}}\right) K_{2}\left(\frac{Z_{2 i}-z_{2}}{h_{2}}\right)
$$

Deriving Our Estimator, cont.

- Estimate $p\left(y \mid z_{1}, z_{2}\right)$ with kernel density estimator:

$$
\begin{aligned}
p_{n}\left(y \mid z_{1}, z_{2}\right)= & \frac{1}{n h_{1} h_{2} h_{0} p_{n}\left(z_{1}, z_{2}\right)} \sum_{i=1}^{n} K_{0}\left(\frac{Y_{i}-y}{h_{0}}\right) K_{1}\left(\frac{Z_{1 i}-z_{1}}{h_{1}}\right) \\
& \times K_{2}\left(\frac{Z_{2 i}-z_{2}}{h_{2}}\right)
\end{aligned}
$$

- Given H, we estimate $\boldsymbol{\beta}$ and γ simultaneously with the estimating equations:

$$
\sum_{i=1}^{n} \frac{\left(H\left(Y_{i}\right)-\mathbf{X}_{i}^{\prime} \boldsymbol{\beta}\right) \mathbf{X}_{i}}{\sigma^{2}\left(\mathbf{X}_{i}^{\prime} \gamma\right)}=0
$$

and

$$
\sum_{i=1}^{n}\left\{\left(H\left(Y_{i}\right)-\mathbf{X}_{i}^{\prime} \boldsymbol{\beta}\right)^{2}-\sigma^{2}\left(\mathbf{X}_{i}^{\prime} \gamma\right)\right\} \mathbf{X}_{i}=0
$$

- How do we arrive at final estimates for $H, \boldsymbol{\beta}$, and γ ?

A Familiar Algorithm...

1. Select initial values of H and $\boldsymbol{\beta}$
2. Estimate γ
3. Re-estimate H given current $\boldsymbol{\beta}$ and γ
4. Re-estimate $\boldsymbol{\beta}$ and γ given current H
5. Repeat Steps 3 and 4 until convergence

The Final Product

Given final estimates of $\boldsymbol{H}, \boldsymbol{\beta}$, and γ, our prediction is given by:

$$
\hat{\mu}(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} \hat{H}^{-1}\left(\mathbf{x}^{\prime} \hat{\boldsymbol{\beta}}+\sigma\left(\mathbf{x}^{\prime} \hat{\gamma}\right) \frac{\hat{H}\left(Y_{i}\right)-\mathbf{X}_{i}^{\prime} \hat{\boldsymbol{\beta}}}{\sigma\left(\mathbf{X}_{i}^{\prime} \hat{\gamma}\right)}\right)
$$

What's Coming Next

- A closer look at implementation
- We've avoided assumptions to gain robustness. Have we sacrificed efficiency?
- What happens as $n \rightarrow \infty$?
- The variance function $\sigma(\cdot)$ had to be specified beforehand
- Simulations can help assess what happens when it is misspecified

