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Motivation: Health Care Cost Data

I Key component of risk assessment models used in insurance,
health care industries

I Requires prediction of a patient’s health care cost on the
original scale

I Let Y be a patient’s health care cost and X be a vector of
patient characteristics and previous health states.

I Goal: Given a patient’s covariate vector x, can we accurately
predict µ(x) = E [Y |X = x]?
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Health Care Cost Data

Problems with health care cost data

I Skewed Distribution

I Heteroscedasticity

I ”Spike” at Zero
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Previous Approaches

Generalized Linear Models

I Prior research suggests estimates can be imprecise in this
setting

Transformation Models
I Retransformation bias is a problem
I Usually require specification of transformation function
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Proposed Model

H(Y ) = X
′
β + σ

(
X

′
γ
)
ε

I H(·) is unknown, increasing function with H(y0) = 0 for some
finite y0

I σ(·) is known variance function

I β and γ are vectors of unknown parameters

I ε is error term with E [ε] = 0, Var [ε] = 1, and unknown
distribution function F

I How do we go from this model to a prediction µ̂(x)?
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Smearing Estimator (Duan 1983)

I Let Y1, . . . ,Yn denote the untransformed response and
νi = H(Yi ) denote the transformed response for some known
function H

I Fit linear model on transformed scale:

νi = xiβ + εi

where εi ∼ F are i.i.d. error terms with mean 0 and variance σ2.

I To avoid retransformation bias, estimate E [Y0|X = x0] with
the smearing estimator based on the empirical CDF:

Ê [Y0|X = x0] =

∫
H−1(x0β̂ + ε)dF̂ (ε)

=
1

n

n∑
i=1

H−1(x0β̂ + ε̂i )
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Smearing Estimator cont.

I Issues with Duan’s smearing estimator
I Transformation H must be specified
I Assumes homoscedasticity

I Project paper extends smearing estimator to case with
unknown transformation and heteroscedasticity
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Deriving Our Estimator: Some Notation

Recall the proposed model:

H(Y ) = X
′
β + σ

(
X

′
γ
)
ε

I Let (Yi ,Xi ), i = 1, . . . , n be a random sample that satisfies
this model

I Let Z1 = X
′
β, Z2 = X

′
γ, Z1i = X

′
iβ, and Z2i = X

′
iγ

I Let G (·|z1, z2) be the CDF of Y |Z1 = z1,Z2 = z2 and p(·, ·)
be the PDF of (Z1,Z2)

I Assume H,F , and G are differentiable with
I h(y) = dH(y)/dy
I f (y) = dF (y)/dy
I p(y |z1, z2) = dG (y |z1, z2)/dy
I gj(y |z1, z2) = dG (y |z1, z2)/dzj , j = 1, 2
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Deriving Our Estimator
Some calculations (details omitted...) give us an expression for
H(y):

H(y) = −
∫ y

y0

∑n
i=1 p(u|Z1i ,Z2i )p(Z1i ,Z2i )∑n
i=1 g1(u|Z1i ,Z2i )p(Z1i ,Z2i )

du

I To estimate H we need estimates of p(z1, z2),G (y |z1, z2), and
derivatives of G (y |z1, z2)

I Estimate G (y |z1, z2) with kernel estimator:

Gn(y |z1, z2) =
1

nh1h2pn(z1, z2)

n∑
i=1

I (Yi ≤ y)K1(
Z1i − z1

h1
)

×K2(
Z2i − z2

h2
)

I Estimate p(z1, z2) with kernel density estimator:

pn(z1, z2) =
1

nh1h2

n∑
i=1

K1(
Z1i − z1

h1
)K2(

Z2i − z2
h2

)
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Deriving Our Estimator, cont.
I Estimate p(y |z1, z2) with kernel density estimator:

pn(y |z1, z2) =
1

nh1h2h0pn(z1, z2)

n∑
i=1

K0(
Yi − y

h0
)K1(

Z1i − z1
h1

)

×K2(
Z2i − z2

h2
)

I Given H, we estimate β and γ simultaneously with the
estimating equations:

n∑
i=1

(H(Yi )− X
′
iβ)Xi

σ2(X
′
iγ)

= 0

and
n∑

i=1

{(H(Yi )− X
′
iβ)2 − σ2(X

′
iγ)}Xi = 0

I How do we arrive at final estimates for H,β, and γ?
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A Familiar Algorithm...

1. Select initial values of H and β

2. Estimate γ

3. Re-estimate H given current β and γ

4. Re-estimate β and γ given current H

5. Repeat Steps 3 and 4 until convergence
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The Final Product

Given final estimates of H,β, and γ, our prediction is given by:

µ̂(x) =
1

n

n∑
i=1

Ĥ−1

(
x
′
β̂ + σ(x

′
γ̂)

Ĥ(Yi )− X
′
i β̂

σ(X
′
i γ̂)

)
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What’s Coming Next

I A closer look at implementation

I We’ve avoided assumptions to gain robustness. Have we
sacrificed efficiency?

I What happens as n→∞?

I The variance function σ(·) had to be specified beforehand
I Simulations can help assess what happens when it is

misspecified
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