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Motivation: Issues with Health Care Cost Data

I Predictions about individuals’ health care costs important for
many applications

I Predictions needed on original scale
I Transformation models are popular in this area

I Need to specify transformation, assume homoscedasticity
I Introduce bias
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Proposed Model

I Let
I Y - an individual’s observed health care cost
I X - a q × 1 vector of observed explanatory variables
I β, γ - q × 1 vectors of unknown parameters, to be estimated
I H(·) - an unknown function, to be estimated
I σ(·) - a known variance function
I ε - an error term with mean 0, variance 1

I Proposed Model:

H(Y ) = X
′
β + σ(X

′
γ)ε
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Implementation

I Recall algorithm for reaching final estimates of H,β, γ:

1. Select initial values of H and β
2. Estimate γ
3. Re-estimate H given current β and γ
4. Re-estimate β and γ given current H
5. Repeat Steps 3 and 4 until convergence
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Implementation: Estimating β and γ

I Estimating equation for β:

n∑
i=1

(H(Yi )− X
′
iβ)Xi

σ2(X
′
iγ)

= 0

I Estimating equation for γ:

n∑
i=1

{(H(Yi )− X
′
iβ)2 − σ2(X

′
iγ)}Xi = 0
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Implementation: Estimating β and γ

I Estimator for β is easy...

β̂n =

(
n∑

i=1

XiX
′
i

σ2(X
′
iγ)

)−1 n∑
i=1

XiH(Yi )

σ2(X
′
iγ)

I But γ is a bit trickier...
I Closed form solution?
I Newton-Rhapson?
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Simulation Setup

I Generate X1 ∼ Bernoulli(p), p = 0.5

I Generate X2 ∼ Unif (0, 2)

I Let

σ(X
′
γ) =

√
0.4 + X1γ

I Generate H(Y ) according to

H(Y ) = β0 + X1β1 + X2β2 +
√

0.4 + γX1ε

where ε ∼ N(0, 1).

8



Estimating β and γ

I Propose initial value of γ

I Estimate β via closed-form solution

I Think of estimating equations for γ as function f : R→ R3

I Find derivative vector J =

 ∂f1/∂γ
∂f2/∂γ
∂f3/∂γ


I Estimate γ with Newton Rhapson:

γ(n+1) = γ(n) −
(

(JT J)−1JT
)
f (γ(n))

I Repeat updating process until both estimates converge
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Results
I Estimates for β are OK
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Results
I Estimates for γ are way off
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Implementation: Estimating H

I For each observation, define the two indices

Z1 = X
′
β

Z2 = X
′
γ

I Estimator of H is a function of p(z1, z2) and G (y |z1, z2) (and
its derivatives)

H(y) = −
∫ y

y0

∑n
i=1 p(u|Z1i ,Z2i )p(Z1i ,Z2i )∑n
i=1 g1(u|Z1i ,Z2i )p(Z1i ,Z2i )

du
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Kernels

I Kernels taken from Muller (1984)

K0 =
15

16

(
1− 2x2 + x4

)
K1,K2 =

315

2048

(
15− 140x2 + 378x4 − 396x6 + 143x8

)
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Kernels
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Simulation Setup

I Same as before, except no longer observe H(Y )

I Observe Y where Y is related to H via

H(y) = Φ−1 (exp(y − 10))

I Goal: Estimate H, assuming we know β and γ
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What It Should Look Like...

5 6 7 8 9 10

−4
−2

0
2

4

Y

H(
Y)

(a) For simulated data

0 20000 40000 60000

−1
0

−5
0

5
10

15
Y

H(
Y)

(b) For IMPACT data

8.5 8.6 8.7 8.8 8.9

8.4
8.6

8.8
9.0

Average of  predicted by decile

Av
era

ge
 of

 ob
se

rve
d b

y d
ec

ile

(c) Checking model for the IMPACT

Figure 1: (a) The averaged estimates of transformation curve (Solid — true functions; dashed—
estimated; dotted-linear—confidence limit). (b) The estimated transformation and its 95%
confidence limits for IMPACT data. (c) Prediction against actual for logarithm of cost with
bandwidth h1 = 4, h2 = 10, hy = 90, the solid line is diagonal.

late-life depression (Unutzer et al., 2002). A total of 1801 patients aged 60 years or older with

major depression (17%), dysthymic disorder (30%), or both (53%) were randomly assigned to

the IMPACT intervention (n = 906) or usual care (n = 895). Intervention patients had up

to 12 months access to a depression care manager who oÆered education, care management,

and support of antidepressant management by the patient’s primary care physician. Primary

outcomes were collected at baseline, 6, 12, 18 and 24 months. In the paper, we focus on the cost

in the first year (Y ), the mean and standard deviations of Y were $6258.442 and $5065.507,

respectively, and the coe±cients of skewness and kurtosis of Y are 3.36 and 26.94, respectively.

We fit the data using the model (1.1) with the outcome variable being outpatient costs in the

first year, and the two independent variable, X1 and X2. Here X1 was the binary treatment

indicator, and X2 was the mean score of the 20 depression items from the Symptom Checklist.

To reduce the computational time, we applied a log transformation to the outcome variable
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http://biostats.bepress.com/uwbiostat/paper327
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...and What I’m Getting
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Summary and Next Steps

I Implementing the procedure is proving difficult

I Look for solution to convergence problem for estimating γ
I Speed up code for estimating H

I Re-write code in C
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Question Time

Thanks for your attention!
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