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Background and Motivation: Health Care Cost Data

I Key component of risk assessment models used in insurance,
health care industries

I Requires prediction of a patient’s health care cost on the
original scale

I Let Y be a patient’s health care cost and X be a vector of
patient characteristics and previous health states.

I Goal: Given a patient’s covariate vector x, can we accurately
predict µ(x) = E [Y |X = x]?
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Health Care Cost Data
I What we’d like to have...
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Health Care Cost Data

I And what we actually have...
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Health Care Cost Data

I Skewed Distribution

I Heteroscedasticity

I Estimates of µ(x) can vary widely depending on how
estimators handle these aspects of the data
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Transformation: A Common Approach

I Suppose we observe a patient’s health care cost Y and a
vector of patient characteristics X

I A common approach is to fit a linear model to a
transformation of the data

H(Y ) = X
′
β + ε

I Is H(Y ) actually of interest?

I Does the model tell us anything about the data on the
original scale?
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Transformation Bias

I Suppose we fit a linear model on the transformed scale

I Bias is often introduced when retransforming

I In general,

E [H−1(H(Y ))|X ] 6= H−1E [H(Y )|X ]

I How do we get unbiased estimate on original scale?
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Duan’s Smearing Estimator

I Assume H is known and data are homoscedastic

I Fit linear model on transformed scale to obtain parameter
estimate β̂ and residuals ε̂

I Unbiased estimate on original scale is guaranteed by taking
expectation with respect to residuals:

Ê [Y0|X = x0] =

∫
H−1(x0β̂ + ε)dF̂ (ε)

=
1

n

n∑
i=1

H−1(x0β̂ + ε̂i )

I Suppose we want
I Robustness to model misspecification?
I Ability to handle heteroscedasticity?
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Extending Duan’s Smearing Estimator

I Proposed Model

H(Y ) = X
′
β + σ(X

′
γ)ε

I Knowns
I σ(·)
I E [ε] = 0,Var [ε] = 1

I Unknowns
I H(·)
I β,γ
I CDF F of ε

I Approach:
I Estimate H via kernel estimation
I Estimate β and γ via estimating equations
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Estimating β and γ

I Authors propose set of estimating equations:

n∑
i=1

(H(Yi )− X
′
iβ)Xi

σ2(X
′
iγ)

= 0

and

n∑
i=1

{(H(Yi )− X
′
iβ)2 − σ2(X

′
iγ)}Xi = 0

I Benefits
I Closed-form solution for β

I Drawbacks
I No closed-form solution for γ
I Newton-Rhapson implementation will vary depending on form

of σ
I Mean-variance relationship?
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Estimating H

I Note that Y depends on X through indices Z1 = X
′
β and

Z2 = X
′
γ

I Under the model, we have the following relationship between
conditional CDF of Y , G (y |z1, z2), and unknown CDF of
error term F :

G (y |z1, z2) = F

(
H(y)− z1
σ(z2)

)
I Taking derivatives with respect to y and z1 yields

p(y |z1, z2) = f

(
H(y)− z1
σ(z2)

)
H

′
(y)

σ(z2)
and

g1(y |z1, z2) = −f
(
H(y)− z1
σ(z2)

)
1

σ(z2)

11



Estimating H continued

I These derivatives give us the relationship between p(y |z1, z2)
and g1(y |z1, z2) :

p(y |z1, z2) = −g1(y |z1, z2)H
′
(y)

I By replacing z1, z2 with Z1i ,Z2i and summing over all
observations, we obtain

H
′
(y) = −

∑
p(y |Z1i ,Z2i )p(Z1i ,Z2i )∑
g1(y |Z1i ,Z2i )p(Z1i ,Z2i )

I Integrating both sides yields an expression for H:

H(y) = −
∫ y

y0

p(y |Z1i ,Z2i )p(Z1i ,Z2i )∑
g1(y |Z1i ,Z2i )p(Z1i ,Z2i )

I Estimator for H is given by replacing unknown functions
p(y |z1, z2), g1(y |z1, z2), p(z1, z2) with estimates obtained
through kernel estimation

12



Estimating H continued

pn(y |z1, z2) =
1

nh0h1h2

n∑
i=1

K0

(
Yi − y

h0

)
K1

(
Z1i − z1

h1

)
×K2

(
Z2i − z2

h2

)
Gn(y |z1, z2) =

1

nh1h2pn(z1, z2)

n∑
i=1

I (Yi ≤ y)K1

(
Z1i − z1

h1

)
×K2

(
Z2i − z2

h2

)
pn(z1, z2) =

1

nh1h2

n∑
i=1

K1

(
Z1i − z1

h1

)
K2

(
Z2i − z2

h2

)
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Kernels

I Kernels taken from Muller (1984)

K0 =
15

16

(
1− 2x2 + x4

)
K1,K2 =

315

2048

(
15− 140x2 + 378x4 − 396x6 + 143x8

)
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Kernels
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Final Algorithm

I Note interdependence of Ĥ and β̂, γ̂

I Iterative algorithm combines the two estimation procedures

1. Select initial values of H and β

2. Estimate γ

3. Re-estimate H given current β and γ

4. Re-estimate β and γ given current H

5. Repeat Steps 3 and 4 until convergence
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Asymptotic Behavior

I Authors show that
I
√
n
(
Ĥ(y)− H(y)

)
asymptotically normal

I
√
n
(
β̂ − β

)
asymptotically normal

I
√
n (γ̂ − γ) asymptotically normal

I Asymptotic covariances are complicated and depend on other
unknown functions

I More things to estimate!
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Getting Estimate on Original Scale

I Given final estimates Ĥ, β̂, and γ̂, estimate on original scale is

µ̂(x) =
1

n

n∑
i=1

Ĥ−1

(
x
′
β̂ + σ(x

′
γ)

Ĥ(Yi )− X
′
i β̂

σ(X
′
iγ)

)

I Compare with Duan’s smearing estimator:

µ̂(x) =
1

n

n∑
i=1

H−1(x β̂ + ε̂i )
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Simulations: Setup

I Generate data according to model

H(Y ) = X
′
β +

√
X

′
γε

where
I β = (−1.8, 1.4, 1.4)
I γ = (0.4,−0.35, 0)
I X1 ∼ Bernoulli(.5)
I X2 ∼ Unif (0, 2)
I ε ∼ N(0, 1)
I H is related to Y via

H(y) = Φ−1 (exp(y − 10))

19



Simulations: Consistency of β estimates
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Simulations: Consistency of γ estimates
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Simulations: Duan’s Smearing Estimator vs. Proposed
Estimator

x µ(x) Method Bias
(0,1) 8.795 Proposed 0.008

Duan 0.06

(0,2) 9.753 Proposed 0.008
Duan 0.03

(1,1) 9.818 Proposed 0.001
Duan 0.03

(1,2) 9.990 Proposed < 0.001
Duan 0.006
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Discussion and Critique

I Statistical Contribution
I Extends previous methods to address issues commonly

encountered in these types of data

I Scientific Contribution
I Provides more accurate estimation of health care costs

I Implementation is slow
I Approach is somewhat unintuitive

I Explaining to non-statistical collaborators might be difficult

I Do we really need to transform data?
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Thanks for your time!
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