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Papers:

I Statistical significance in high-dimensional linear models,
Bühlmann (2012).

I On asymptotically optimal confidence regions and tests for
high-dimensional models, van de Geer, Bühlmann, and Ritov
(2013).
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Associations: Marginal v.s. Conditional

Genes: {A∗} {B∗1 ,B2,B3} {C1,C2,C3}
(An example from Grazier G’Sell et al. 2013. )

Figure: A Manhattan plot from Nishimura et al. (2012).
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Regression models on high-dimensional data

Y = Xβ∗ + ε, ε ∼ Nn(0, In). (1)

OLS/ML on this simple model is equivalent to:

minimize
β∈Rp

‖Y − Xβ‖2
2. (2)

Linear algebra gives β̂ = (XTX )−1XTY .

However, XTX is non-invertible when p > n. Consider the ridge
regression:

minimize
β∈Rp

‖Y − Xβ‖2
2 + λn

p∑
i=1

β2
i . (3)
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Penalized regression

There are many choices of penalties:

I `2 norm, i.e. ‖β‖2
2 =

p∑
i=1

β2
i , ridge regressions.

I `1 norm, i.e. ‖β‖1 =
p∑

i=1
|βi |, lasso regressions.

I and more.

Advantages of using certain penalties:

1. Each penalty imposes a low-dimensional structure.

2. Convex loss functions.
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Assessing uncertainty

I Lasso: “Sparse estimators such as Lasso do not have a
tractable limiting distribution. The limiting distributions of
Lasso estimators depend on unknown parameters in
low-dimensional setting. Bootstrap and subsampling
techniques are plagued by non-continuity of limiting
distributions.” (van de Geer et al., 2013).

I Ridge regression: Bias(β̂) = −λn(XTX + λnI )
−1β; Bootstrap

in low-dimensional setting, see Crivelli et al. (1995).
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Related work

I Variable selections: Correct recover of support requires the
“beta-min” assumption (Meinshausen and Bühlmann 2006,
Wainwright 2009, Negahban et al. 2010).

I Bootstrap and subsampling method. In low-dimensional
setting, bootstraps for lasso are proposed by Chatterjee and
Lahiri (2011), Sartori (2011). For Ridge regression, see
Crivelli et al. (1995).

I A significance test for the lasso (Lockhart, Taylor, Tibshirani,
and Tibshirani, 2013).
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Another line of research...

I Zhang and Zhang (2011), and Bühlmann (2012) provided
hypothesis testing procedures on high-dimensional linear
models.

I Javanmard and Montanari (2013) provided a minimax test for
linear models.

I van de Geer et al. (2013) claimed to reach the semiparametric
efficiency bound, and the method be generalized to
`1-penalized GLMs and ridge regressions.
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Summary

I Marginal associations v.s. conditional associations.

I Reasons for using penalized regressions on high-dimensional
data.

I Current attempts to make statistical inference on
high-dimensional regressions.
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A glimpse ahead

Figure: A Motif regression result from Bühlmann (2012).
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The method in van de Geer et al. (2013)

β̂ = argmin
β∈Rp

(‖Y − Xβ‖2
2/(2n) + λ‖β‖1). (4)

The Karush-Kuhn-Tucker conditions are

− XT (Y − X β̂) + λτ̂ = 0,

‖τ̂‖∞ ≤ 1, and τ̂j = sign (β̂j) if β̂j 6= 0.
(5)

Using the first equation, we have

n−1XTX (β̂ − β∗) + λτ̂ = XT ε/n. (6)

Now assume we have a Θ̂ that is a “relaxed form” of an inverse of
n−1XTX .

β̂ − β∗ + Θ̂λτ̂ = Θ̂XT ε/n −∆, (7)

where ∆ = (Θ̂Σ̂− I )(β̂ − β).
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The method in van de Geer et al. (2013), continued

We will show that ∆, in fact
√
n∆, is asymptotically negligible

under certain assumptions on sparsity. Then let

b̂ = β̂ + Θ̂XT (Y − X β̂)/n. (8)

Theorem 2.2 in van de Geer et al. (2013) claims that:

√
n(b̂ − β∗) = W + oP(1), W |X ∼ Np(0, σ2

ε Θ̂Σ̂Θ̂T ). (9)
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