
Assessing Uncertainty in High-dimensional
Regression Models

A summary of van de Geer et al. (2013)

Chen Shizhe

Department of Biostatistics
University of Washington

May 30, 2013

Chen Shizhe Assessing Uncertainty in H-D Regression models 1/21



Outline

I Motivation: marginal/conditional associations.

I Testing procedure: a bias-corrected estimator.

I Properties: Theoretical and numerical.

I Discussion.
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Associations: Marginal v.s. Conditional

Genes: {A∗} {B∗1 ,B2,B3} {C1,C2,C3}
(An example from Grazier G’Sell et al. 2013. )

Figure: A Manhattan plot from Nishimura et al. (2012).
− log(0.05) ≈ 1.3
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Our goal

Consider a linear model:

Y˜ = Xβ˜∗ + ε˜ = β∗1X˜ (1) + X(−1)β˜∗−1 + ε˜, ε˜∼ Nn(0˜, σ2
ε In). (1)

We want to find:

I A p-value for H0 : β∗1 = 0 v.s. Ha : β∗1 6= 0.

I A p-value for H0 : β∗j = 0 ∀j ∈ G v.s. Ha : ∃j ∈ G , β∗j 6= 0.

I A (1− α) confidence interval for β∗1 .
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Related work

I Variable selections: Correct recover of support requires the
“beta-min” assumption (Meinshausen and Bühlmann 2006,
Wainwright 2009, Negahban et al. 2010).

I A significance test for the lasso (Lockhart, Taylor, Tibshirani,
and Tibshirani, 2013).

I Bootstrap and subsampling method. In low-dimensional
setting, bootstraps for lasso are proposed by Chatterjee and
Lahiri (2011), Sartori (2011). For Ridge regression, see
Crivelli et al. (1995) and Cule et al. (2011).
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Another line of research...

I Zhang and Zhang (2011), and Bühlmann (2012) provided
hypothesis testing procedures on high-dimensional linear
models.

I Javanmard and Montanari (2013) provided a minimax test for
linear models.

I van de Geer et al. (2013) claimed to reach the semiparametric
efficiency bound, and the method be generalized to
`1-penalized GLMs and ridge regressions.
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Review of linear models

Y˜ = Xβ˜∗ + ε˜, ε˜∼ Nn(0˜, σ2
ε In). (2)

When p < n, the MLE is

β̂˜ = argmin
β˜∈Rp

(‖Y˜ − Xβ˜‖2
2/2n). (3)

The Karush-Kuhn-Tucker condition is then

−XT (Y˜ − Xβ̂˜) = 0˜. (4)

Let Σ̂ , n−1XT X. Further assume that Σ̂ is invertible, with
Θ̂ = Σ̂−1. Hence,

β̂˜ =
1

n
Θ̂XTY˜ = β˜∗ +

1

n
Θ̂XT ε˜. (5)
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`1-penalized regressions

β̂˜ = argmin
β˜∈Rp

(‖Y˜ − Xβ˜‖2
2/(2n) + λ‖β˜‖1). (6)

The KKT condition is

−XT (Y˜ − Xβ̂˜) + λτ̂˜ = 0˜, τ̂j = SGN (β̂j ) (7)

Now assume we have a Θ̂ that is a “relaxed form” of an inverse of
Σ̂ , n−1XT X.

β̂˜ − β˜∗ + Θ̂λτ̂˜ = Θ̂XT ε˜/n −∆˜ , (8)

where ∆˜ = (Θ̂Σ̂− Ip)(β̂˜ − β˜∗).

Finally let
b̂˜ = β̂˜ + Θ̂XT (Y˜ − Xβ̂˜)/n. (9)
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Finding Θ̂: sparse inverse covariance estimation

Let γ̂˜j = argmin
β˜∈Rp

(‖X˜ j − X−jγ˜‖2
2/(2n) + λj‖γ˜‖1).

Then define

Ĉ =


1 −γ̂1,2 · · · −γ̂1,p

−γ̂2,1 1 · · · −γ̂2,p
...

...
. . .

...
−γ̂p,1 −γ̂p,2 · · · 1

 , (10)

and also

T̂2 = diag(τ̂2
1 , · · · , τ̂2

p ), τ̂2
j = (X˜ j − X−j γ̂˜j )

TX˜ j/n (11)

Finally,
Θ̂ = T̂−2Ĉ. (12)
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A short summary

I We defined a new estimator for β˜∗:
b̂˜ = β̂˜ + Θ̂XT (Y˜ − Xβ̂˜)/n.

I Under certain conditions,
√
n∆˜ is asymptotically negligible,

hence

√
n(b̂˜−β˜∗) = Θ̂XT ε˜+oP(1), Θ̂XT ε˜|X ∼ Np(0˜, σ2

ε Θ̂Σ̂Θ̂T ).
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One preliminary result:
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The asymptotic distribution

Theorem (Theorem 2.2 in van de Geer et al. (2013))

For the linear model in (1) with Gaussian error ε˜∼ Nn(0˜, σ2
ε In),

assume Restricted Eigenvalues and the sparsity assumption hold.
When using λj = λmax �

√
log(p)/n, ∀j , and λ �

√
log(p)/n, we

have: √
n(b̂˜Lasso − β˜0) = W˜n + ∆˜ n,

W˜n|X ∼ Np(0˜, σ2
εΩ), Ωn = Θ̂Σ̂Θ̂T ,

‖∆˜ n‖∞ = oP(1).

(13)

Furthermore, ‖Ωn −Σ−1‖∞ = oP(1) as n→∞.
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Assumptions

Assumption (Sparsity)

s0 = o(n1/2/ log(p)) and sj ≤ smax = o(n/ log(p)).

Assumption (Restricted eigenvalue)

The rows of X are i.i.d. realizations from a Gaussian distribution
PX whose p-dimensional covariance matrix Σ has the smallest
eigenvalue Λ2

min ≥ L > 0, and ‖Σ‖∞ , maxj ,k |Σjk | = O(1).
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... but why?

I Why sparsity?

I Why restrict the minimum eigenvalue?

I Why Gaussian design?
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Simulation design

Some setups:

I β˜∗ = (b0, b0, b0, b0, b0, 0, ...0).

I Xi ∼iid Nn(0˜,Σ), where Σ is a block-diagonal matrix.
(m1 = 40)

I Y˜ ∼ Nn(Xβ˜∗, In). (m2 = 100).

Parameters in this study are:

I p ∈ {1000, 2000}.
I n ∈ {100, 400, 800}.
I ρ ∈ {0, 0.4}
I b0 ∈ {0.25, 0.75}.
I λ ranges from 0.5 to 3, and one chosen by BIC.
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The baseline graph
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p = 2000
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ρ = 0.4
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Summary

I The estimation/testing procedure.

I Theoretical justifications.

I Some simulation results.
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Discussion

For general linear models, we need to consider

I β̂ (Van de Geer, 2008),

I Σ̂ , −῭: new assumptions.

Θ̂: “the relaxed inverse”,

I Sparse matrix: estimate Θ using other methods, e.g. Glasso
(Friedman et al., 2008).

I Matrix of different types.

In application,

I Sample size.

I Tuning parameter.
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