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Title of paper

• Radford M. Neal [1999]

• Bayesian Statistics, 6: 475-501, 1999



What the paper is about

• Regression and Classification

• Flexible models not limited to simple parametric forms
• Objective is to obtain a predictive distribution for the

outcome of a future observation

• Gaussian Process Priors

• Bayesian approach to obtain posterior distributions of
model parameters

• Integrate over model parameters

⇒ predictive distribution depends only on the known
observations

• Gaussian Processes (GP) to define the covariance
functions between outcomes



Linear regression example

• Observed data :
(
x (1), t(1)

)
, . . . ,

(
x (n), t(n)

)
• t(i) = outcome (target) for case i

• x (i) =
[
x
(i)
1 , . . . , x

(i)
p

]
= vector of p fixed inputs (predictors) for case i

• Fit a familiar model:

t(i) = α +

p∑
u=1

x (i)u βu + ε(i), ε(i) ∼
iid

N
(
0, σ2

ε

)
• Put independent priors on unknown parameters α and βu:

α ∼ N
(
0, σ2

α

)
, βu ∼

iid
N
(
0, σ2

u

)



Linear regression example

⇒ Prior joint multivariate Gaussian distribution for t(i):

E
[
t(i)
]

= E

[
α +

p∑
u=1

x (i)u βu + ε(i)

]
= 0

Cov
[
t(i), t(j)

]
= E

[(
α +

p∑
u=1

x (i)u βu + ε(i)

)(
α +

p∑
u=1

x (j)u βu + ε(j)

)]

= σ2
α +

p∑
u=1

x (i)u x (j)u σ2
u + δijσ

2
ε

δij = 1 if i = j and 0 otherwise i.e. Kronecker delta

C =
{

Cov
[
t(i), t(j)

]
i , j ∈ [1, n]

}



Linear regression example

• Observed targets t =
[
t(1), . . . , t(n)

]T ∼ Nn (0,C )

• Given the inputs for a new case x (n+1), the predictive
distribution is Gaussian:

E
[
t(n+1) | t(1), . . . , t(n)

]
= kTC−1t

var
[
t(n+1) | t(1), . . . , t(n)

]
= V − kTC−1k

• k =
(

Cov
[
t(n+1), t(1)

]
, . . . ,Cov

[
t(n+1), t(n)

] )T
• V = Cov

[
t(n+1), t(n+1)

]
= prior var

[
t(n+1)

]



Why use Gaussian processes?

• Cov
[
t(i), t(j)

]
is the key term in the predictive distribution

e.g. linear combination of prior hyperparameters
σ2
α, σ

2
u, σ

2
ε for linear regression

• Gaussian process procedure can handle more interesting
and flexible models, simply by using a different covariance
function

e.g. regression model based on a class of smooth
functions may be obtained with a covariance function:

Cov
[
t(i), t(j)

]
= η2 exp

(
−

p∑
u=1

ρ2u
(
x (i)u − x (j)u

)2)
+ δijσ

2
ε



Covariance functions

• May be constructed with various parts representing prior
variance/covariances e.g. constant, linear, exponential.

• Valid covariance function must always result in a positive
definite covariance matrix for the targets.

• Various hyperparameters may be used to control:

• amount of noise in the model
• strength of association between each of the predictors

with the target
• sizes of the different additive components of the model.

• Posterior inference for these hyperparameters will reveal
high-level structure in the data, and make model selection
easier and more intuitive.



The title is ”Regression and classification . . . ”

• Suppose the targets t(i) are from the set {0, . . . ,K − 1}.
• The distribution of t(i) would then be in terms of

unobserved real-valued “latent” variables y
(i)
1 , . . . , y

(i)
K−1

for each case i

e.g. Class probabilities for K classes:

Pr
(
t(i) = k

)
=

exp
(
y
(i)
k

)
∑K−1

h=0 exp
(
y
(i)
h

)
• The K latent values can then be given independent and

identical Gaussian process priors.



Bayesian approach

• “Latent” values for the targets have to be integrated over

⇒ Markov chain Monte Carlo methods e.g. Gibbs sampling

• Integrate over the posterior distribution for the
hyperparameters of the covariance function e.g. η2, ρ2u, σ

2
ε

⇒ Markov chain sampling e.g. hybrid Monte Carlo



Other literature

• Gaussian processes have recently received more
attention with the introduction of kernel machines
in machine learning

• [Rasmussen and Williams, 2006]

• Various nonparametric and flexible regression and
classification methods

• Chapters 10-12 of [Wakefield, 2013].



Conclusion

• Why I chose this paper

• Gaussian Process models are a form of flexible
regression: letting the data speak for itself

• Use of covariance functions could be a “natural” way of
thinking about the underlying physical processes

• What’s Next

• Construct various covariance functions and the
corresponding regression models (some graphs to plot)

• Reproduce the simulation example (classification
problem)

• Implement the Bayesian procedure in R



Components of a covariance function

• Constant

→ same for any pair of cases, regardless of inputs x e.g. σ2
α

• Linear

→ has form:
∑p

u=1 x
(i)
u x

(j)
u σ2

u

• Exponential

→ has form: η2 exp
(
−
∑p

u=1 ρ
R
u |x

(i)
u − x

(j)
u |R

)
,

→ R ∈ [0, 2] for the covariance matrix to be positive definite

• Noise/Jitter

→ has form δijσ
2
ε or δijJ

2

→ δij = 1 if i = j and 0 otherwise
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