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What’s the paper about again?

• Gaussian Processes (GP)

• Focus on covariance functions between outcomes

→ how two outcomes are correlated, based on values of
their predictors

→ letting the data speak for itself

• Prediction

• Objective is to obtain a predictive distribution for the
outcome of a future observation

• Radford M. Neal [1999]



Yes, there was some math . . .

• Simple Linear Regression Example

• Observed data :
(
x (1), t(1)

)
, . . . ,

(
x (n), t(n)

)
• t(i) = outcome (target) for case i

• x (i) = fixed input (predictor) for case i

→ univariate for this example, but may be p-dimensional

• Fit a familiar model:

t(i) = α + x (i)β + ε(i), ε(i) ∼
iid

N
(
0, σ2

ε

)
• Put independent priors on unknown parameters α and β:

α ∼ N
(
0, σ2

α

)
, β ∼

iid
N
(
0, σ2

β

)



Yes, there was some math . . .

⇒ Prior joint multivariate Gaussian distribution for t:

t =
[
t(1), . . . , t(n)

]T
∼ Nn (0,C )

Covariance matrix C =
{

Cov
[
t(i), t(j)

]
i , j ∈ [1, n]

}
Cov

[
t(i), t(j)

]
= E

[(
α + x (i)β + ε(i)

)(
α + x (j)β + ε(j)

)]

= σ2
α + x (i)x (j)σ2

β + δijσ
2
ε ,

δij = 1 if i = j and 0 otherwise i.e. Kronecker delta



So why the fuss over the covariance function?

C ij = Cov
[
t(i), t(j)

]
= σ2

α︸︷︷︸
Constant

+ x (i)x (j)σ2
β︸ ︷︷ ︸

Linear

+ δijσ
2
ε︸︷︷︸

Noise

• Covariance between the outcomes is fully described by the
relationship between the predictors

e.g. Linear function of predictors: restrictive?
Suppose the covariance depends on differences between
predictor values, rather than just the values themselves?

⇒ Are there other ways to describe the covariance function?



So why the fuss over the covariance function?

• How about an exponential term instead?

C ij = Cov
[
t(i), t(j)

]
= η2 exp

(
−ρ2

(
x (i) − x (j)

)2)︸ ︷︷ ︸
Exponential

+ δijσ
2
ε︸︷︷︸

Noise

• Observations with predictor values that are “far apart”
have much smaller covariances

• η = magnitude

• ρ = scale

⇒ Gaussian kernel: exp

(
−(x(i)−x(j))

2

1/ρ2

)



Show me some graphs instead

Cov
[
t(i), t(j)

]
= 1 + x (i)x (j) + 0.12 exp

(
−32

(
x (i) − x (j)

)2)
Cov

[
t(i), t(j)

]
= 1 + x (i)x (j)
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Show me some graphs instead

Cov
[
t(i), t(j)

]
= exp

(
−52

(
x (i) − x (j)

)2)
Cov

[
t(i), t(j)

]
= exp

(
−
(
x (i) − x (j)

)2)
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Enough with the covariance functions . . .

• May be constructed with various components
e.g. constant, linear, exponential.

• Components of the covariance function may reflect
different plausible features of the underlying structure

• Valid covariance function must always result in a positive
definite covariance matrix for the targets.

• Different forms of the covariance function Cov
[
t(i), t(j)

]
define infinitely many flexible regression models



Step back to prediction
• Targets still have a multivariate Gaussian distribution

t =
[
t(1), . . . , t(n)

]T ∼ Nn (0,C )

• C ij = Cov
[
t(i), t(j)

]
• Given the inputs for a new case x (n+1), the predictive

distribution for the new outcome t(n+1) is Gaussian:

E
[
t(n+1) | t(1), . . . , t(n)

]
= kTC−1t

var
[
t(n+1) | t(1), . . . , t(n)

]
= V − kTC−1k

• k =
(

Cov
[
t(n+1), t(1)

]
, . . . ,Cov

[
t(n+1), t(n)

] )T
• V = Cov

[
t(n+1), t(n+1)

]
= prior var

[
t(n+1)

]



Finally . . . some data

• 106 observations of fossil shells

• Age (in millions of years) and Ratios of strontium isotopes

• Previous example from STAT 527

• Data from SemiPar package in R [Ruppert et al., 2003],
who got it from Bralower et al. [1997]



An “old” dataset
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How to fit a Gaussian Process Regression Model

• Assume the prior covariance function:

C ij = Cov
[
t(i), t(j)

]
= η2 exp

(
−ρ2

(
x (i) − x (j)

)2)
+ δijσ

2
ε

• Based on the multivariate Gaussian distribution of the
outcomes, the log-likelihood is:

log p(t | x , η, ρ) = −n

2
log(2π)− 1

2
log |C | − 1

2
tTC−1t

• Find maximum likelihood esimates η̂, ρ̂

• σ2
ε assumed to be fixed at 10−9



Gaussian Process Regression on Fossil data
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What’s Next?

C ij = Cov
[
t(i), t(j)

]
= η2 exp

(
−ρ2

(
x (i) − x (j)

)2)
+ δijσ

2
ε

• How to implement a Bayesian approach?

• Integrate out parameters to get “parameter-free”
marginal distribution p

(
t(n+1) | t(1), . . . , t(n)

)
for

prediction?

• More to come . . .

• Compare against other semi-parametric procedures
• p-dimension covariate regression example (p > 1)
• How to implement a three-way classification /

discrimination procedure?
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