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Recap: what is the paper about?

e Gaussian Processes (GP)

e Focus on covariance functions between outcomes
— how two outcomes are correlated, based on values of
their predictors
e Parameters describe the relationships between predictors,
rather than the predictors directly

e Prediction

o Objective is to obtain a predictive distribution for the
outcome of a future observation

o Take a Bayesian approach to integrate the parameters
out of the predictive distribution

e Radford M. Neal [1999]



Recap: Covariance functions

o Observed data : (x(), t@) ... (x("), ¢(")
e Assume joint multivariate Gaussian distribution for t:

t= [t(l),...,t(”)}T ~ N, (0, C)

Covariance matrix C = cov [t(i), t(j)] i,j €[1,n]
N————

Covariance function

Cjj = cov [t(")7 t(j)} =f (x(i),x(j))

e Covariance between the outcomes is fully described by the
relationship between the predictors

e Covariance function f can take infinitely many forms . ..



Recap: Covariance functions X
Smooth regression models: Cj; = 7> exp (—p2 (x(i) — X(’j)) ) —|—6,-jaf
~—~—~

N

o A

Noise
Exponential

Target (1) values

-2 -1 0 1 2

Predictor (x) values

eg Cj=exp(— (x0—x0)?)
Cj = exp (_ (x) — x0>)2) +0.52exp (_52 (x() — x0>)2)



An “old” dataset

Fossil data
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e Age (in millions of years) and Ratios of strontium isotopes

® Previous example from STAT 527; data from SemiPar package in R
[Ruppert et al., 2003], who got it from Bralower et al. [1997]



“parameter-free” predictive distribution

e Assume the prior covariance function:
cov [t(i), t(j)} = 7]2 exp (—p2 (x(i) - x(j))2) + (5,-J-(rf

e o2 assumed to be fixed at 10~°

€

= Integrate 1), p out to get “parameter-free” predictions:

(t(”+1) |t t("))

://p (t("+l) |t g, p) p (7]7/) M t(”)) dn dp

univariate Gaussian posterior

1 zsjp (t(”+1) PO t(n)’,,(sgp(s)) ,
s=1

wn|

n®), p5) = posterior draws from p (71,;) | A t(”))

® Thanks to Jon Wakefield



Gaussian Process Regression on Fossil data

Gaussian Process Regression on fossil data (parameters integrated out)
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Gaussian Process Regression on Fossil data

Strontium Ratio
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Gaussian Process Regression on Fossil data

Strontium Ratio
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Flexible Regression Models fitted on fossil data
(95% Prediction Intervals)

-- GPR
- - Penalized Cubic Regression

T T T T T T
95 100 105 110 115 120

Age (millions of years)




Sensitivity to parameterization

e Could we include another term to capture the smaller
differences in x?*

e Suppose we assume this prior covariance function instead:

cov [t(i), t(j)} = nf exp <— (x(i) — x(j))2>

Vv
force a smooth short-term trend in x

+ 13 exp (—;)2 (x(i) - x(j))2> + 607

e If there is no short-term trend (on the scale of x), then
posterior distribution of 7); will be concentrated at 0, and
have little influence on the covariance?

1Suggestion from Patrick Heagerty



Sensitivity to discontinuities

Gaussian Process Regression on fossil data (Posterior Predicted Means)
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Sensitivity to discontinuities

Gaussian Process Regression on fossil data (Posterior Predicted Means)
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Sensitivity to discontinuities

Flexible Regression Models fitted on fossil data
(Predicted Means)
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Classification / Discrimination

e Suppose the targets t() are from the set {0,..., K — 1}.

e The distribution of () would then be in terms of
unobserved real-valued “latent” variables yl('), YR
for each case i

e Class probabilities for K classes:

Pr(t/) = k) = - <y£ )>

Zh 0 exp( )>

e Latent variables yl( ) .yK . modelled with GP

regression



Simulation example

e For each observation i, generate four variables:

AR 0 ~ Unif (0,1)

e Use only il(i) and )?2(i) in determining the class t(7:

) € {0,1,2}
"() and x() have no effect on t(?)

o Assume the foIIowmg covariance function for the /atent
variables yk , ke {0,1,2}:

cov [yii),yij)} = oot exp( Zpu X = xP) >+5u02

e Assume 02 = 02 = 10?



Simulation example

® Class0 + Class1 A Class 2
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Simulated observations from [Neal, 1999];

covariates x{) = %7 + z, z ~ N(0,0.1)



Simulation example

e Fit the model with 400 labelled training cases

e Find misclassification error rate with 600 test cases
e Posterior distribution for Xél) and xﬁ') will be concentrated
near zero

e Results with other classification methods:

Method Misclassification error rate (%)
Neal [1999] (from paper) 13
Classification Tree 19
Multinomial Logistic Regression 31




“The end has no end”

N 4 , N\ 2
cov {y,f'),y,fj)} =02 + 1’ exp (— Zpi (xl(,’) - xE”) ) + ;02
u=1

e How to conduct classification with multiple latent
variables per observation?

e Integrate out latent variables to get predictive
probabilities

Pr(t=k|x,0)= /~-/Pr(t:k,yo ,,,,, YK—1 I><79) dyg -+ dyk_1

= //Pr (t: klygy-oe» nyl) Pr (yo ,,,,, YK-1 |X,9) dyg---dyk_1

posterior

e Integrate out parameter 0 to get “parameter-free”
predictive distribution



“The time to hesitate is through”

+

Gaussian Process Regression and Classification is a
flexible tool for predictions

Parameters in the assumed covariance function may be
used for inference on the underlying data structure

Bayesian approach allows parameter-free posterior
predictions

Family of possible regression surfaces may be sensitive to
(or limited by) the assumed covariance function

Balance has to be made between modelling complex
covariance functions and obtaining interpretable,
positive-definite covariance matrices

May be computationally more expensive than other
nonparametric or machine-learning methods



Bayesian Statistics, 6: 475-501, 1999

BAYESIAN STATISTICS 6, pp. 475-501
J. M. Bernardo, J. O. Berger; A. P. Dawid and A. F. M. Smith (Eds.)
© Oxford University Press, 1998

Regression and Classification Using
Gaussian Process Priors

RADFORD M. NEAL
University of Toronto, Canada

SUMMARY

Gaussian processes are a natural way of specifying prior distributions over functions of one or more
input variables. When such a function defines the mean response in a regression model with Gaussian
errors, inference can be done using matrix computations, which are feasible for datasets of up to about
a thousand cases. The covariance function of the Gaussian process can be given a hierarchical prior,
which allows the model to discover high-level properties of the data, such as which inputs are relevant
to predicting the response. Inference for these covariance hyperparameters can be done using Markov
chain sampling. Classification models can be defined using Gaussian processes for underlying latent
values, which can also be sampled within the Markov chain. Gaussian processes are in my view the
simplest and most obvious way of defining flexible Bayesian regression and classification models, but
despite some past usage, they appear to have been rather neglected as a general-purpose technique. This
‘may be partly due to a confusion between the properties of the function being modeled and the properties
of the best predictor for this unknown function.



Bayesian Statistics, 6: 657-684, 1999

BAYESIAN STATISTICS 6, pp. 657684
J. M. Bernardo, J. O. Berger; A. P. Dawid and A. F. M. Smith (Eds.)
© Oxford University Press, 1999

Spatial Dependence and Errors-in-Variables
in Environmental Epidemiology

JON WAKEFIELD and SARA MORRIS
Imperial College, London, UK

SUMMARY
Ecological correlation studies, in which grouped data are used to investigate the relationship between
outcome and explanatory variables, are widely used in epidemiology. We consider a spatial context in
which the groups represent areal units. In particular we analyse data from an on-going study investigating
the relationship between myocardial infarction and the water constituents magnesium, calcium and
fluoride. Information on these constituents is available through repeated measurements over time within
water-company defined ‘water zones’. The analysis is challenging due to the over-dispersion and spatial
dependence within the data; the errors-in-variables nature of the exposure; the presence of potential
confounders such as socio-economic status; and the different geographic scales at which the health,
exposure and confounder variables are available. Our modelling strategy is to begin with a very simple
model and to then increase the complexity as inadequacies are revealed by examination of diagnostics,
both frequentist and Bayesian. Our emphasis is on utilising models that are necessarily complex and in

ddressing the itivity of inference to modelli i
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Parameter posterior distributions

Joint posterior density of p and n (105 random draws)
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Parameter posterior distributions

N2

Joint posterior density of p and n, (105 random draws)

—— Posterior Mean
- - Max Likelihood Estimate
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cov [t(i), t(j)] = nf exp (7 (x(i) - x(j))z) + 77% exp (7,02 (x(i) - XU))Z) + JUO'Z



Parameter posterior distributions

Joint posterior density of n; and n; (105 random draws)
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How to obtain a predictive distribution
e Recall the observed n cases have the joint distribution:
[t 6T~ N, (0, C)

= The joint distribution of a new outcome t("*1) with the
observed n cases is:

T C k
e o5 4]

o k= (co [t O], cov [t 1] )
o V =cov [t(""D) (D] = prior var [t("V)]

o C,k,V are just defined by ...



How to obtain a predictive distribution

e ...a Covariance function!

e Assume the prior covariance function:

€

cov [t("), t(j)} =’ exp <—p2 (x(i) - X(j))z) + 607

e 02 assumed to be fixed at 107°

= Given the inputs for a new case x("1) the predictive
distribution for the new outcome t("*1) is Gaussian:

E [t | ¢® e o p] = kT CT
var [t(”H) | t(l),...,t(”),n,p} =V -—k"C %k

e What shall we do with 7, p?
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