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Beta-Blocker Heart Attack Trial

• Group et al. (1982)

• Propranolol vs Placebo

• Primary endpoint: All cause mortality
I Propranolol 7% mortality (135 deaths)
I Placebo showed 9.5% mortality (183 deaths).

• Crude incidences of various AEs was observed to be
higher in Propranolol arm

• Time-to-event analysis suggested evidence of shorter time
to first AE i.e bronchospasm/fatigue (Davis et al., 1987)



Literature Review: Moore and van der Laan (2009)

Parametric framework

• Covariate adjustment in linear models can provide gains in
precision over unadjusted estimate (Biost 514/515/570)

• Adjusting in logistic regression often does not buy you
improvements in precision (Robinson and Jewell, 1991;
Hernández et al., 2006)

Estimating equations framework

• Estimation of nuisance parameters

• “Lack of criterion for selecting candidate solutions when
there are multiple roots in parameter of interest”



Focus of the paper: Discrete failure time

Objectives

• Estimation of treatment specific survival at a fixed end
point

• Exploits important (pre-specified) covariates to improve
efficiency in treatment specific survival at fixed end point

• Provide a consistent estimator in the presence of
informative censoring

“Ultimate” goal: Difference in survival probabilities between
treatments adjusting for pre-specified covariates of interest.



Introduction to Time-to-event outcomes

Origin End 

End Origin 

Follow-up 

Time to event 

Event of Interest: Death/Infection/AE

Right censored data: Non-ignorable missing data.

Informative censoring



Brief Review: Survivor/Hazard function

S(t) = Pr(T > t) = 1− F (t)

• F (t) is the fraction of the population whose event time
has been observed by time t.

λ(t) = lim
∆t→0

Pr[t ≤ T < t + ∆t|T ≥ t]

∆t

• Conditional probability per unit time (Hazard rate).



Brief Review: Survival Analysis

Cox (1972) Proportional Hazards Regression

λ(t|A,W) = λ0(t) exp(β1A + βT
W W)

Cox PH allows us to adjust for baseline covariates with W

Assumptions of Cox-PH

• Non-informative censoring

• Proportional hazards (odds) assumptions

• Large sample size?

Solution: Biost 515/537 Cox-PH with robust standard errors.



Setup: Discrete Version (Zhang and Gilbert, 2010)
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λ(tj) = Pr(T = tj |T > tj−1)

T ∗: “True” failure time (Unobserved due to discrete follow-up)

T = tj if T ∗ ∈ [tj−1, tj) with tj for j = 1, · · · , 10.

T̃ = min(T ,C ): where C is our censoring time.

∆ = I (T ≤ C ) : Indicator of subject not being censored

A ∈ {0, 1} : Treatment indicator

W: Observed covariates



Discrete failure time

If someone develops an infection during the study
· · · T̃ = min(6,+∞) = 6 with ∆ = 1
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If someone develops an infection after the study ended
· · · T̃ = min(11.5, 10) = 10 with ∆ = 0
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Scientific questions: Setup based on the paper

Having observed the data O = (W,A, T̃ ,∆) ∼ PO where PO

is the data generating mechanism.

PO → Ψ1(pO)(tk) = Pr(T1 > tk) = E0(S0(tk |A = 1,W))

PO → Ψ0(pO)(tk) = Pr(T0 > tk) = E1(S0(tk |A = 0,W))

We might be interested in the following treatment effect at tk

PO → ΨAD(pO)(tk) = Pr(T1 > tk)− Pr(T0 > tk)



Proposed method & Author’s claims

PO → ΨAD(pO)(tk) = Pr(T1 > tk)− Pr(T0 > tk)

• “Target” the parameter of interest directly

• Targeted MLE: borrow useful information from parametric
models and overcome drawbacks of estimating equations.

• “Doubly robust”
I Robust to model mis-specification
I Overcomes the problem of informative censoring

• Simulations on weak/strong covariate in combination
with random censoring and informative censoring.



What is to come

• Introduction to targeted MLE for survival outcomes

• Estimation algorithm

• Test the coded algorithm on a “toy” dataset

• Test with the proposed simulation in the paper
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