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Overview

• Marginal vs Conditional

• What is TMLE?

• Key Estimation procedure

• Some test simulations

• Hidden assumptions

• Hidden Statistical Properties



Brief Review: Time-to-event outcomes

S(t) = Pr(T > t) = 1− F (t)

λ(t) = lim
∆t→0

Pr[t ≤ T < t + ∆t|T ≥ t]

∆t

Event of Interest: Infection/AE at clinic visit

Right censored data: Non-ignorable missing data.



Discrete Failure Time (Zhang and Gilbert, 2010)
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λ(tj) = Pr(T = tj |T > tj−1)

T ∗: “True” failure time (Unobserved due to discrete follow-up)

T = tj if T ∗ ∈ [tj−1, tj) with tj for j = 1, · · · , 10.

T̃ = min(T ,C ): where C is our censoring time.

∆ = I (T ≤ C ) : Indicator of subject not being censored



Objectives (Moore and van der Laan, 2009b)

• Estimate marginal treatment specific survival at a fixed end
point

• Use covariates to gain efficiency

• Provide a consistent estimator in the presence of informative
censoring



Question we want to address

Approximate Scientific question: Pr(T1 > tk)− Pr(T0 > tk)

Event of Interest: First record of adverse event reported

Simplest analysis: Kaplan Meier Survival curves

Assumptions: Random censoring

Adjusted analysis: Cox-PH or Logistic regression (More
assumptions)



RCT: Marginal or Conditional

Scientific question: Pr(T > tk |A = 1)− Pr(T > tk |A = 0)

Marginal

P(T > t|A = a) = S0(t|A = a)

Estimated probability of survival past time t for treatment a for
the entire population.

Conditional

P(T > t|A = a,W ) = S0(t|A = a,W )

Estimated probability of survival past time t for treatment a while
holding W fixed.



What does TMLE estimate

Let Ψ :M→ R is pathwise differentiable at any density p0 ∈M

Ψ1(p0)(tk) =

Marginal︷ ︸︸ ︷
Pr(T1 > tk) = EW [

Conditional︷ ︸︸ ︷
S0(tk |A = 1,W)]

Ψ0(p0)(tk) = Pr(T0 > tk) = EW [S0(tk |A = 0,W])

ΨAD(p0)(tk) = Ψ1(p0)(tk)−Ψ0(p0)(tk)

Consider the treatment group A = 1,

Pr(T1 > tk |W) = S0(tk |A = 1,W): Probability of surviving
beyond tk when treatment is 1 given the covariates W .

Pr(T1 > tk) = E [S0(tk |A = 1,W)]: Probability of surviving
beyond tk when treatment is 1 averaging over the covariates W .



Example: Random treatment assignment of 0.5

W ∼ U(0.2, 1.2)

λ(t|A,W ) = expit(−3− A + W 2)I (t < 10) + I (t = 10)



Idea behind TMLE (Van Der Laan, 2011)
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Fig. 5.1 TMLE flow chart.

Ψ (P∗n) that are closer to the truth than the value generated using the initial estimate
P0

n: specifically, Ψ (P∗n) is less biased than Ψ (P0
n).

TMLE provides a concrete methodology for mapping the initial estimator P0
n into

a targeted estimator P∗n, which is described below in terms of an arbitrary statistical
model M and target parameter mapping Ψ () defined on this statistical model. In
order to make this more accessible to the reader, we then demonstrate this general
template for TMLE with a nonparametric statistical model for a univariate random
variable and a survival probability target parameter. Specifically, TMLE involves
the following steps:

• Consider the target parameter Ψ :M→ R. Compute its pathwise derivative at P
and its corresponding canonical gradient D∗(P), which is also called the efficient



Likelihood representation for 1 observation

W: Covariates

A: Treatment

(T̃ ,∆): Time and event indicator

Ḡ (t−|A,W) = Pr(C ≥ t|A,W)(Moore and van der Laan, 2009a)

S(tk |A,W ) =
∏

t≤tk
[1− λ(t|A,W )]

P0(O) = Pr(W,A, T̃ ,∆) = Pr(T̃ ,∆|W,A)Pr(W)Pr(A|W)

=

Q20︷ ︸︸ ︷[
λ(tk |A,W)

tk−1∏
t=1

(1− λ(tk |A,W))

]δ [ tk∏
t=1

(1− λ(tk |A,W))

]1−δ

Ḡ (t−|A,W)δPr(C = tk |A,W)1−δ︸ ︷︷ ︸
g20

Pr(W)︸ ︷︷ ︸
Q10

Pr(A|W)︸ ︷︷ ︸
g10



Key Results for TMLE: Doubly robust

Q0

Q10: Distribution of the baseline covariates

Q20: Conditional distribution of the hazard given treatment and
baseline covariates

g0

g10: Treatment mechanism

g20: Conditional distribution of the censoring distribution given
treatment and baseline covariates

Either Q0 or g0 is correct, then TMLE is consistent



TMLE as Plug-in estimators

1. Estimate the ĝ0(A = 1|W ) = 1
n

∑n
i=1 Ai

2. Estimate the conditional probability of censoring Ḡ 0(t−|A,W )

3. Estimate the λ̂0(t|A,W ) via logistic regression

logit[λ̂0(t|A,W )] =
K∑

i=1

αi I (t = i) + βAA + βW W

4. Update the above model using λ̂0(t|A,W ) by including the
penalty ε = {ε0, ε1} and the “clever” covariate
ĥ0(t,A,W ) = {ĥ0, ĥ1}

logit[λ̂1(t|A,W )] = logit[λ̂0(t|A,W )] + εT ĥ0(t,A,W )

ĥi (t,A,W ) = − I (A = i)I (t ≤ tk)

ĝ0(A = i |W )Ḡ 0(t−|A,W )

Ŝ(tk |A,W )

Ŝ(t|A,W )



TMLE as Plug-in estimators continued

5. Use current estimate of λ̂1(t|A,W ) to update ĥ1(t,A,W )

Ŝ(tk |A,W ) =
∏
t≤tk

[1− λ̂1(t|A,W )]

6. Iterate 4 & 5 until ε̂→ 0

7. Plug-in final estimate of Ŝ∗i (tk |A = i ,W ) for i = 0, 1

Ψ̂1(p0)(tk) =
1

n

n∑
i=1

Ŝ∗(tk |A = 1,Wi )

Ψ̂0(p0)(tk) =
1

n

n∑
i=1

Ŝ∗(tk |A = 0,Wi )



Test simulations with no covariates
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Test Simulations for weak covariates
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Simulations

W ∼ U(0.2, 1.2); A ∼ Bin(0, 1
2 )

λ(t|A,W ) = expit(−3− A + W 2)I (t < 10) + I (t = 10)



Problem

Survival function never increases over time.

Acknowledgements: Taken from bartsblackboard.com



Next steps

Compute the variance/Bootstrap

Rerun simulations

Fill in the gaps in the paper

Extensions
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Thinking in counterfactuals

You take the red pill - you stay
in Wonderland and I show you
how deep the rabbit hole goes.

You take the blue pill - the
story ends, you wake up in
your bed and believe whatever
you want to believe.

Morpheus, The Matrix



Hidden Assumptions: Thinking in counterfactuals

For an individual in the placebo arm...

IC∗0tk (pO) =
∑
t≤tk

[I (T̃ = t,∆ = 1)− I (T̃ ≥ t)λ(t|A = 0,W )]h0(t,A,W )

+ S0(tk |A = 0,W )−Ψ0(pO)(tk)

hi (t,A,W ) = − I (A = i)

g(1)Ḡ (t−|A,W )

S(tk |A,W )

S(t|A,W )
I (t ≤ tk)



Key assumptions 1: Coarsening at random

Definition of CAR (Stitelman and van der Laan, 2010)

Coarsened data structures are data structures where the full data is
not observed.

“Coarsening mechanism” is only a function of the full data, i.e. the
data in which you would have seen all counterfactuals, through the
observed data

Implications

dP0(O) = Q0(O)g0(O|X )

Q0 is the density associated with full data

g0 contains the censoring and treatment mechanism.



Statistical definitions

M is the set of possible probability distribution of O with
probability distribution P0 ∈M where M is dominated by
common measure µ. Hence, density p = dP0

dµ

O1, · · · ,On are n i.i.d realizations of O.

O1, · · · ,On can be represented by the empirical probability
distribution Pn placing mass 1/n on each of the n observations.



Statistical properties

TMLE uses solves the efficient Influence curve.

IDEA: If we can linearize our estimator

Linearity of estimator

An estimator ψn is an asymptotically linear estimator of a
parameter ψ if

ψn − ψ =
1

n

n∑
i=1

ICP(Oi ) + oP

(
1√
n

)
where the influence curve ICP(O) has expectation 0 and finite
variance i.e. ICP(O) ∈ L2

0(P) and moreover this should hold for all
P ∈M.



Efficient Influence curve

Asymptotic Distribution

The asymptotic distribution (via linearity of the influence curve)

√
n
(
ψ̂∗(tk)−Ψ(p0)(tk)

)
→ N(0, σ2)

Estimate σ2 by empirical variance

σ̂2 =
1

n

n∑
i=1

ICP(Oi )
2

Implications

Compute Wald-like confidence intervals ψ̂∗(tk)± 1.96 σ̂2
√

n
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