Introduction 00 Motivation 000 TMLE

Simulations 000 Discussion 00 References

Application of Time-to-Event Methods in the Assessment of Safety in Clinical Trials

by KL Moore and MJ van der Laan Final Presentation

William Jen Hoe Koh

June 4, 2013

Introduction	Motivations	TMLE	Simulations	Discussion	References
00	000	00000000	000	00	
Overview					

- Introduction to survival analysis
- Motivations
 - 1. Scientific objectives
 - 2. Statistical objectives
- Targeted Maximum Likelihood Estimation (TMLE)
- Simulation Results
- Discussion

Introduction	Motivations	TMLE	Simulations	Discussion	References
●○	000	00000000	000	00	
Survival A	nalysis				

$$\lambda(t) = \lim_{\Delta t \to 0} \frac{\Pr[t \le T < t + \Delta t | T \ge t]}{\Delta t}$$

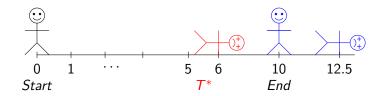
$$S(t) = Pr(T > t) = 1 - F(t)$$

Event of Interest: Infection/AE at clinic visit

Right censored data: Non-ignorable missing data.

Introduction	Motivations	TMLE	Simulations	Discussion	References
0●	000	0000000	000	00	

Discrete Failure Time



$$\lambda(t_j) = \Pr(T = t_j | T > t_{j-1})$$

T^{*}: "True" failure time (Unobserved due to discrete follow-up) $T = t_j$ if $T^* \in [t_{j-1}, t_j)$ with t_j for $j = 1, \dots, 10$. $\widetilde{T} = min(T, C)$: where *C* is our censoring time. $\Delta = I(T \leq C)$: Indicator of subject **not** being censored Introduction 00 Motivations •00 TMLE

Simulations 000 Discussion 00 References

Scientific Motivation: RCT

Scientific question: $Pr(T > t_k | A = 1) - Pr(T > t_k | A = 0)$

Simplest analysis: Kaplan Meier Survival curves

What if we have a set of potential baseline covariates W that predicts outcome?

Adjusted analysis: Cox-PH or Logistic regression (More assumptions)

** A is the treatment indicator, W is our baseline covariate.

Introduction	Motivations	TMLE	Simulations	Dis
00	000	0000000	000	00

Discussion 00 References

Statistical Motivation: Marginal vs Conditional

Scientific question: $Pr(T > t_k | A = 1) - Pr(T > t_k | A = 0)$

Marginal: $P(T > t | A = a) = S_0(t | A = a)$

Probability of survival past time t for treatment a for the entire population.

Conditional: $P(T > t | A = a, W) = S_0(t | A = a, W)$

Probability of survival past time t for treatment a while holding W fixed.

Potential problem: Adjusting for a covariate in survival analysis do not provide a marginal interpretation even though there is gain in efficiency (Hernández et al., 2006)

Paper's Objectives: Marginal vs Conditional

Scientific question: $Pr(T > t_k | A = 1) - Pr(T > t_k | A = 0)$

- 1. Use of baseline covariate adjustment to estimate marginal treatment specific survival at a fixed time point.
- 2. Exploit baseline covariates to gain efficiency.
- 3. Provide a consistent estimator under certain censoring mechanisms.
 - Random censoring (missing completely at random)
 - Baseline covariates that predicts censoring outcomes (missing at random)

Introduction	Motivations	TMLE	Simulations	Discussion	References
00	000	•0000000	000	00	

Proposed estimator: Targeted MLE

$$\Psi_{a}^{TMLE}(p_{0})(t_{k}) = \underbrace{\Pr(T_{a} > t_{k})}^{Marginal} = \mathbb{E}_{W}[\underbrace{S_{0}(t_{k}|A = a, \mathbf{W})}^{Conditional}]$$
$$\Psi_{AD}^{TMLE}(p_{0})(t_{k}) = \Psi_{1}^{TMLE}(p_{0})(t_{k}) - \Psi_{0}^{TMLE}(p_{0})(t_{k})$$

where p_0 is the density distribution of $O = (W, A, \tilde{T}, \Delta)$

- $\Psi_a^{TMLE}(p_0)(t_k)$: Marginal parameter
- Marginal is obtained by averaging the conditional survival over observed baseline covariates *W*
- Uses the influence curve (IC) which has mean 0 at the true parameter value. Can be used as an estimating equation.

Introduction 00

Motivations 000 TMLE 00000000 Simulations 000 Discussion 00 References

Causal framework

You take the red pill - you stay in Wonderland and I show you how deep the rabbit hole goes. You take the blue pill - the story ends, you wake up in your bed and believe whatever you want to believe.

Morpheus, The Matrix

- *T^r*: potential survival outcome of taking the red pill
- T^b : potential survival outcome of taking the blue pill

In reality (movie), only 1 outcome (story) plays out. The counterfactual definition is useful for applying it to the entire population. We treat the counterfactual component as missing.

The average treatment effect of taking the red pill instead of the blue is

$$\widehat{\Psi}_{r}^{TMLE}(p_{0})(t_{k}) - \widehat{\Psi}_{b}^{TMLE}(p_{0})(t_{k})$$

$$= \underbrace{\widehat{\widehat{S}}(t_{k}|A = r)}_{Marginal} - \underbrace{\widehat{\widehat{S}}(t_{k}|A = b)}_{\widehat{\widehat{S}}(t_{k}|A = r, \mathbf{W}) - \widehat{S}(t_{k}|A = b, \mathbf{W})]$$

Introduction	Motivations	TMLE	Simulations	Discussion	References
00	000	00000000	000	00	

Influence curve: Notation heavy

For an individual on treatment arm A = a

$$IC_{a}(p_{0})(t_{k}) = \sum_{t \leq t_{k}} \underbrace{\left[I(\widetilde{T} = t, \Delta = 1) - I(\widetilde{T} \geq t)\lambda(t|A = a, W)\right]}_{\text{Covariate to remove bias}} + \underbrace{S(t_{k}|A = a, W) - \Psi_{a}(p_{0})(t_{k})}_{\text{Expectation is 0}}$$

$$h_{a}(t, A, W) = -\frac{I(A = a)I(t \le t_{k})}{g^{0}(A = a|W)\bar{G}^{0}(t_{-}|A, W)} \frac{S(t_{k}|A, W)}{S(t|A, W)}$$

 $g^0(A=a|W)$: Treatment mechanism $ar{G}^0(t_-|A,W)={\sf Pr}(C\geq t|A,W)$: Censoring mechanism

Introduction	Motivations	TMLE	Simulations	Discussion	References
00	000	00000000	000	00	

Key Results for TMLE: Doubly robust

Q_0

 Q_{10} : Distribution of the baseline covariates W.

 $\lambda(t|A, W)$: Conditional distribution of hazard given treatment and baseline covariates.

g0

$g_1(A|W)$: Treatment mechanism

 $\overline{G}(.|A, W)$: Conditional distribution of censoring given treatment and baseline covariates. (Censoring mechanism)

Either Q_0 or g_0 is correct, then TMLE is consistent

Introduction	Motivations	TMLE	Simulations	Discussion	References
00	000	000000000	000	00	
1.0					

Inference

Asymptotic Distribution

$$\sqrt{n}\left(\widehat{\Psi^*}(t_k)-\Psi(p_0)(t_k)\right)\to N(0,\sigma^2)$$

Asymptotic variance

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \widehat{IC}(\hat{g}, \hat{G}, \hat{\lambda})^2$$

Wald CI

$$\hat{\psi}^*(t_k) \pm 1.96 \frac{\hat{\sigma}}{\sqrt{n}}$$

1. Perform a parametric estimation using glm fit to estimate $\lambda(t|A, W)$

$$\operatorname{logit}[\hat{\lambda}^{0}(t|A,W)] = \sum_{i=1}^{K} \alpha_{i} I(t=i) + \beta_{A} A + \beta_{W} W$$

2. Refit the above model using $\hat{\lambda}^0(t|A, W)$ as an offset and include the "clever" covariate $\hat{h}^0(t, A, W) = {\hat{h}_0, \hat{h}_1}$

 $\operatorname{logit}[\hat{\lambda}^{1}(t|A,W)] = \operatorname{logit}[\hat{\lambda}^{0}(t|A,W)] + \epsilon^{T}\hat{h}^{0}(t,A,W) \quad (1)$ where $\epsilon = \{\epsilon_{1}, \epsilon_{2}\}$

Introduction	Motivations	TMLE	Simulations	Discussion	References
00	000	0000000	000	00	

TMLE as Plug-in estimators continued

3. Use current estimate of $\widehat{\lambda}^1(t|A,W)$ to update $\widehat{h}^1(t,A,W)$

$$\widehat{S}(t_k|\mathsf{A},\mathsf{W}) = \prod_{t \leq t_k} [1 - \widehat{\lambda}^1(t|\mathsf{A},\mathsf{W})]$$

4. Iterate 2 & 3 until $\hat{\epsilon} \rightarrow 0$

5. Plug-in final estimate of $\widehat{S}_i^*(t_k|A=i, W)$ for i=0,1

$$\widehat{\Psi}_{a}(p_{0})(t_{k}) = \frac{1}{n}\sum_{i=1}^{n}\widehat{S}^{*}(t_{k}|A=a,W_{i})$$

Scenario	Censoring	% Censored*	β_w
1	No censoring	0	Weak
2	MCAR	34.2	Weak
3	MAR	35.5	Weak
4	No censoring	0	Strong
5	MCAR	37.5	Strong
6	MAR	36.9	Strong

MCAR: i.e a subject has some probability of being censored and is independent of the covariate.

MAR: i.e. a subject has some probability of being censored depending on the covariate W.

Reference analysis: Kaplan Meier survival estimate at each time point

*Censoring proportion based on observed data in the paper is 33%

Introduction 00 Motivations 000 TMLE 00000000 Simulations 000 Discussion 00 References

Simulation results 1

Addressing objective 1 & 3

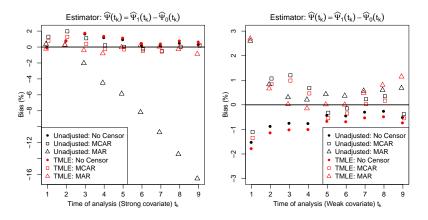


Figure: Left: Bias in unadjusted estimator with respect to the truth when censoring is strongly associated with covariate. Minimal bias when we have weak covariate and informative censoring.

Introd	uction
00	

Motivations 000 TMLE 00000000 Simulations

Discussion 00 References

Simulation results 2

Addressing statistical objective 2 & 3

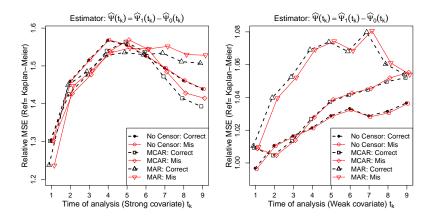


Figure: Comparison of MSE: Under model misspecification of hazard, we still obtain gain in efficiency.

Introduction	Motivations	TMLE	Simulations	Discussion	References
00	000	00000000	000	•O	
Take home	messages				

Pros

- "Correctly" estimate the marginal parameter with covariate adjustment and efficiency gain over unadjusted estimator
- (Doubly) Robust to model misspecification
- Unifies concepts in causal inference and survival

Disadvantages

- Complicated
- Potential problem in observational studies.

Potential extensions

- Collaborative TMLE: Construct a sequence of TMLE estimators
- How does this method perform when we use group sequential designs?

Introduction	Motivations	TMLE	Simulations	Discussion	References
00	000	00000000	000	O	
Thank you	ı Laina				

Thank you all specially for the feedback and support throughout the quarter.

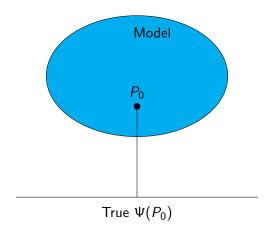
In particular, I would like to thank

- Patrick, Jon
- Ken for his 570 slides on causal inference
- Peter for suggesting the paper

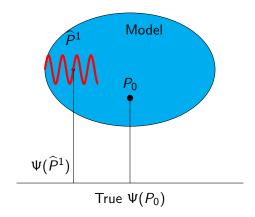
Introduction 00	Motivations 000	TMLE 00000000	Simulations 000	Discussion 00	References

- Hernández, A. V., Eijkemans, M., and Steyerberg, E. W. (2006). Randomized controlled trials with time-to-event outcomes: how much does prespecified covariate adjustment increase power? Annals of epidemiology, 16(1):41.
- Moore, K. and van der Laan, M. (2009a). Increasing power in randomized trials with right censored outcomes through covariate adjustment. *Journal of biopharmaceutical statistics*, 19(6):1099–1131.
- Moore, K. L. and van der Laan, M. J. (2009b). Application of time-to-event methods in the assessment of safety in clinical trials (chapter 20). In Peace, K. E., editor, *Design and Analysis of Clinical Trials with Time-to-Event Endpoints*, pages 455–482. Chapman and Hall/CRC; Biostatistics Series.
- Stitelman, O. and van der Laan, M. (2010). Collaborative targeted maximum likelihood for time to event data. The international journal of biostatistics, 6(1):Article-21.
- Van der Laan, M. J. and Robins, J. M. (2003). Unified methods for censored longitudinal data and causality. Springer Verlag.
- Zhang, M. and Gilbert, P. B. (2010). Increasing the efficiency of prevention trials by incorporating baseline covariates. Statistical communications in infectious diseases, 2(1).

Introduction	Motivations	TMLE	Simulations	Discussion	References
00	000	0000000	000	00	

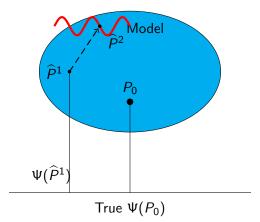


Introduction	Motivations	TMLE	Simulations	Discussion	References
00	000	00000000	000	00	



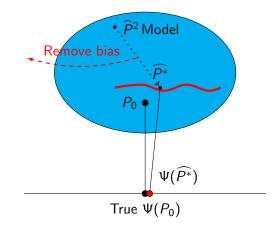
$$\operatorname{logit}[\hat{\lambda}^{0}(t|A,W)] = \alpha(t) + m(A,W)$$

Introduction	Motivations	TMLE	Simulations	Discussion	References
00	000	0000000	000	00	



 $\operatorname{logit}[\hat{\lambda}^{1}(t|A,W)] = \operatorname{logit}[\hat{\lambda}^{0}(t|A,W)] + \epsilon^{T} \hat{h}^{0}(t,A,W)$ (2) Update $\hat{\lambda}^{1}(t|A,W)$, $\hat{h}^{1}(t,A,W)$.

Introduction	Motivations	TMLE	Simulations	Discussion	References
00	000	00000000	000	00	



Repeat previous step and iterate ϵ until $\hat{\epsilon}^* \to 0$ Plug-in final estimate of $\widehat{S}_i^*(t_k|A = i, W)$ for i = 0, 1