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The SIR Model
Our study is restricted to the sexually transmitted epidemic of
HIV in cuba.

Figure : Schematic description of the SIR model with contact
tracing

Parameter of interest: λ1,λ2 and λ3.



Why Not MCMC

Marcov Chain Monte Carlo Method is not always good with
SIR models

• Computationally prohibitive for high-dimensional missing
observations (Cauchemez and Ferguson,2008; Chis Ster
and others, 2009)

• Fine-tuning of the proposal distribution is required for
efficient algorithms (Gilks and Roberts, 1996)



What If We Use MCMC

Observed data: removal time: Γ1 = 0, Γ2, · · · , Γn, Γi ∈ [0,T ]
Missing data: infectious time: I1, I2, · · · , Im,I1 < 0
Prior:
λ1 ∼ Gamma(a1, v1)
λ2 ∼ Gamma(a2, v2),
y ∼ θexp(θy)I (y < 0), y is the density of I1



Metropolis Hasting Algorithm with Gibbs sampling

Sampling posteriors

• f (Γ, I |λ1, λ2, I1) =∏n
i=1 λ2YΓ−

j

∏m
j=2 λ1XI−j

YI−j
exp{−

∫ T

I1
(λ1XtYt + λ2Yt)dt}

• π(λ1|Γ, I , I1, λ2) ∼ Γ(a1 +
∫ T

I1
XtYtdt,m − 1 + v1)

• π(λ2|Γ, I , I1, λ1) ∼ Γ(a2 +
∫ T

I1
Ytdt, n + v2)



M-H step inside

abbreviate f (Γ, I |λ1, λ2, I1) by f (I )

• Moving an infection time: f (I−{s}+{t})
f (I )

∧ 1 , t is sampled

uniformly on(I1,T )

• Removing an infection time: f (I−{s})m
f (I )(T−I1)

∧ 1

• Adding a new infection time: f (I+{t})(T−I1)
f (I )(m+1)

∧ 1



Approximate Bayesian Computation

Two Approximation are at the core of ABC

• Replacing observations with summary statistics: Use
posterior p(θ|S(x) = Sobs) instead of p(θ|x)

In a fully observed SIR model, Summary statistics are R1
t

and R2
t , where R1

t + R2
t = Rt , t ∈ [0,T ]. R1

t and R2
t are

sufficient statistics.

• Simulation-based approximations of the posterior. (More
will be described on the partially observed model.)



The Algorithm

1. Generating N random draws(θi , si), i = 1, · · · ,N . The
parameter θi is generated from the prior distribution π, and the
vector of summary statistics si is calculated for the ith data set
that is simulated from the generative model with parameter θi .

2. Associate to the ith simulation, the weight
Wi = Kδ(si − s0bs), where δ is a tolerance threshold and Kδ a
(possibly multivariate)smoothing kernel.

3. The distribution
∑N

i=1 Wiδθi/
∑N

i=1 Wi , in which δθ denotes
the Dirac mass at θ, approximates the target distribution.

λj , j = 1, 2, 3, is estimated by λ̂j =
∑N

i=1 λj ,iWi/
∑N

i=1 Wi .



How to simulate summary statistics using

stochastic SIR models

Main difficulty: the rate of detection changes with time.
Assumption: λ0, µ0 are such that the size of the population of
S remains constant. Q: How come?

1. S = S0, I = I0,R = 0 Current time: Γ
2. Assume k events has already be simulated, now come to
(k+1)th event simulate ε ∼ exp(Ck), where
Ck = λ1Stk Itk + (µ1 + λ2)Itk + λ3ItkRtk , Γ′ = Γ + ε
3. Stop if Γ′ > T
otherwise, simulate U ∼ unif (0,Ck)



Example: Simulation from deterministic SIR model



What to do if we obtain the simulated summary

statistics

ABC - rejection-sampling algorithm.
ABC - smoothing kernel



Example



Challenges

Things I will do next:

• applying abc method to with the second approximation.

• applying abc method to the real data: Cuban database.



The End

Thank you all for the attention!
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