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Microarray Data
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Measure expression level across large
numbers of genes simultaneously

Genes express by producing mRNA
→ translated into proteins

∼20,000 protein-coding genes in
humans

Microarray chip contains cDNA for
a different gene at each spot

Sample cDNA hybridizes with
cDNA on chip
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Microarray Data

Two-color:

cDNA from two samples dyed red
and green

Response is log-ratio of intensity

yg = log2
Rg

Gg

Relative expressions only (fold
changes)

Single-channel:

cDNA from a single dyed sample

Absolute expressions
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Microarray Data

Issues:

Expensive! - sample sizes are low, number of genes is high

n << p

Multiple comparisons

control for false discovery rate (FDR), e.g. Benjamini and
Hochberg (1995, 2000)
often assumes independence between genes

For two-color microarrays, experimental design is more
complicated
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Microarray Data

Design:

A B A B

A B

C

A B

C

Matrix:

X =
(

1
)

X =

(
1

−1

)
X =

 −1 0
1 0

−1 −1

 X =

 1 0
0 1

−1 −1


Coefficients:

α =
(

B − A
)

α =
(

B − A
)

α =

(
A− C
B − A

)
α =

(
B − A
C − B

)
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Assumptions

Sample of n microarrays:

Response vector yg = (yg1, . . . , ygn)T for each gene g

Assume

E(yg ) = Xαg , and Var(yg ) = Wgσ
2
g

for known design matrix X and weight matrix Wg

Usually interested in contrasts of coefficients

βg = CTαg

for known contrast matrix C
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Assumptions

Fitting the model gives:

Coefficient estimators α̂g for αg

Contrast estimators β̂g = CT α̂g for βg

Variance estimators s2g for σ2g

(Note: no assumption that yg is normal or model is fit by OLS)
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Assumptions

Assume:

covariance matrices

Var(α̂g ) = Vgσ
2
g and Var(β̂g ) = CTVgCσ

2
g

distributions

β̂gi |βgj , σ2g ∼ N(βgj , vgjσ
2
g ) and s2g |σ2g ∼

σ2g
dg
χ2
dg

all independent, where vgj is the jth diagonal element of
CTVgC
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Differential Expression

The problem:

Would like to test

H0 : βgj = 0 vs H1 : βgj 6= 0

Too many genes! - multiple comparison methods assume
independence across genes

Instead, think of p-values as statistics used to rank genes
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Differential Expression

Previous methods for ranking genes:

Fold changes - use |β̂gj | directly

t-statistics

|tgj | =
|β̂gj |

sg
√
vgj

Problem: sg small → |tgj | large

Offset t-statistics - inflate sg
– Tusher et al (2001) - minimize coefficient of variation
– Efron et al (2001) - percentile of sample variances

Odds ratios - Lönnstedt and Speed (2002) - empirical Bayes
methods to estimate odds of differential expression -
replicated experiments only

Other methods dependent on specific designs
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Differential Expression

Goal: Extend empirical Bayes method from Lönnstedt and Speed
(2002) to more general experiments

Priors:

Variance
1

σ2g
∼ 1

d0s20
χ2
d0

Differential expression

P(βgj 6= 0) = pj

Fold change

βgj |σ2g , βgj 6= 0 ∼ N(0, v0jσ
2
g )
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Differential Expression

After a bunch of calculgebra that I haven’t done yet, we get
posterior mean

s̃2g =
1

E(σ2g |s2g )
=

d0s
2
0 + dg s

2
g

d0 + dg
,

and moderated t-statistic

t̃gj =
β̂gj

s̃g
√
vgj
∼ td0+dg , under H0.

Since this is an empirical Bayes method, estimate
hyperparameters s20 and d0 from the data.
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Results

Simulation study:

All parameters and hyperparameters held constant except
d0 = 1, 10, 1000

Moderated t has fewer false positives than other methods

Rigging the game?

Swirl data:

Mutation in known gene in zebrafish

Degrees of freedom for t increases from 4 to 7.17

Ranking more sensible than other methods
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Discussion

Modern relevance:

Method included in R package limma as part of Bioconductor

Later papers extended the idea of sharing variance - Cui et al
(2005) uses a James-Stein-type shrinkage estimator

Applications to other -omics data with similar
high-dimensional problems

Digital gene expression (DGE) starting to overtake
microarrays

– observed as count data
– modeled with overdispersed Poisson
– empirical Bayes used to share data about overdispersion

parameter across genes
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Discussion

What next?

Do the mathy stuff

– calculation of posterior and marginal distributions
– estimation of hyperparameters

Data normalization

Perform simulations

Develop critique

– paper makes a lot of unrealistic assumptions about distribution
and independence of σ2

g

– imperfect method for imperfect data?
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The End

Any questions?
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