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Microarray Data
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@ Microarray chip contains cDNA for
a different gene at each spot

@ Sample cDNA hybridizes with
cDNA on chip
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Microarray Data
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@ Relative expressions only (fold
changes)

Single-channel:

@ cDNA from a single dyed sample

@ Absolute expressions
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Microarray Data

Issues:

o Expensivel - sample sizes are low, number of genes is high

n<<p

o Multiple comparisons

e control for false discovery rate (FDR), e.g. Benjamini and
Hochberg (1995, 2000)
e often assumes independence between genes

@ For two-color microarrays, experimental design is more
complicated
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Microarray Data

Design:

£

Matrix:

Xx=(1) x:(_}) X:(i §) x:((} (f)

Coefficients:

a=(6-a) a=(e-a) e (3I5)  e=(22F)
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Sample of n microarrays:
o Response vector y; = (Vg1,---,Ygn) ' for each gene g

@ Assume
E(yg) = Xag, and Var(yg) = Wgaé

for known design matrix X and weight matrix W,

@ Usually interested in contrasts of coefficients
B, =Clay

for known contrast matrix C
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Fitting the model gives:
o Coefficient estimators &, for ag

o Contrast estimators Bg = Cng for B,

2

@ Variance estimators sé for og

(Note: no assumption that y, is normal or model is fit by OLS)
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Assume:

@ covariance matrices

Var(&g) = Vgag and Var(f‘ig) = CTVgCUé
@ distributions
A 2 2 21 2 O'2 2
Beil Bgjs g ~ N(Bgjs vgjog) and  szlog ~ ngdg
g

all independent, where vg; is the jth diagonal element of
cTv,C
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Differential Expression

The problem:
@ Would like to test

HO:ng:O VS Hliﬂgj7£0

o Too many genes! - multiple comparison methods assume
independence across genes
@ Instead, think of p-values as statistics used to rank genes
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Differential Expression

Previous methods for ranking genes:
o Fold changes - use || directly
@ t-statistics .
G B4l
Ity = ———
e/ Vej
Problem: sz small — |t,| large

o Offset t-statistics - inflate s,

— Tusher et al (2001) - minimize coefficient of variation
— Efron et al (2001) - percentile of sample variances

e Odds ratios - Lonnstedt and Speed (2002) - empirical Bayes
methods to estimate odds of differential expression -
replicated experiments only

@ Other methods dependent on specific designs
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Differential Expression

Goal: Extend empirical Bayes method from Lonnstedt and Speed
(2002) to more general experiments

Priors:
@ Variance
1 1,
o Differential expression
P(Bgi # 0) = pj

@ Fold change

ﬁgj‘oéu ﬁgj 7é 0~ N(O7 V()jO'é)
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Differential Expression

After a bunch of calculgebra that | haven't done yet, we get
posterior mean

2 _ 1 _ dosg + dgsz
& E(o2s?) do + dg

and moderated t-statistic

A

Bej

Eg,' = ~ td0+dg7 under Hy.

Sg\/Vej

Since this is an empirical Bayes method, estimate
hyperparameters sg and dp from the data.
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Simulation study:

@ All parameters and hyperparameters held constant except
do = 1, 10,1000

@ Moderated t has fewer false positives than other methods

@ Rigging the game?

Swirl data:
e Mutation in known gene in zebrafish
@ Degrees of freedom for t increases from 4 to 7.17

@ Ranking more sensible than other methods
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Discussion

Modern relevance:
@ Method included in R package limma as part of Bioconductor

@ Later papers extended the idea of sharing variance - Cui et al
(2005) uses a James-Stein-type shrinkage estimator

@ Applications to other -omics data with similar
high-dimensional problems
e Digital gene expression (DGE) starting to overtake
microarrays
— observed as count data
— modeled with overdispersed Poisson
— empirical Bayes used to share data about overdispersion
parameter across genes
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Discussion

What next?
@ Do the mathy stuff
— calculation of posterior and marginal distributions
— estimation of hyperparameters
@ Data normalization
@ Perform simulations
@ Develop critique

— paper makes a lot of unrealistic assumptions about distribution
and independence of o7
— imperfect method for imperfect data?
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The End

Any questions?
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