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Microarray Data
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@ ~20,000 protein-coding genes in
humans
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@ Microarray chip contains cDNA for
a different gene at each spot

@ Sample cDNA hybridizes with
cDNA on chip
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Microarray Data

0.0000QO Two-color:

OO0.0000 @ cDNA from two samples dyed red
00000000 and green
OOOO..OO @ Response is log-ratio of intensity
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@ Relative expressions only (fold
changes)

Single-channel:

@ cDNA from a single dyed sample

@ Absolute expressions
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Sample of n microarrays:

o Response vector y; = (Vg1,---,Ygn)' for each gene
g=1...,G
@ Assume the linear model

E(yg) = XBg, and Var(yg) = Wgaé

for known design matrix X and weight matrix W,
@ Assume estimates have distributions
2

P 2 2 202 9g -
BelBgs g ~ N(Bg, Vgog) and sg\agwd—Zng

independent across all genes

(Note: no assumption that y, is normal or model is fit by OLS)
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Under Hp : Bgj = 0, we have

Bei
tgj = —— ~ tdg

Sg/ Ve

Problem #1: Since n is often low, test statistics have high
variance, leading to many false positives

Solution #1: Share variance information across all genes to

improve estimates for aﬁ,

Problem #2: Too many genes! - multiple comparison methods
assume independence across genes

Solution #2: Instead of inference, think of p-values as statistics
used to rank genes
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Bayesian Estimation

Assume prior distributions on [3,; and 0;2:

1

-2 2

g~ dosg Xdo
Pr(Bgj # 0) = pj

Bg/|0-§'76g/ ;é 0~ N(07 VOjoé)

g

with hyperparameters sg, do, pj, and vy,

Through conjugacy, we get posterior distribution:

1 2
2 Xdg+do

2|2
g 1”8 2
dgsz + dosg
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Bayesian Estimation

Now estimate aé using the posterior mean

> 1 _ dgséz, + dosg
& E(og%ls2) dg + do

From this, we get the moderated t-statistic

po- Pd
gl S¢\/Vej

(Note: 7 — t as dy — 0, and  — ¢ as dy — oc)
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Marginal Distributions

Under Hp : Bgj = 0, we have

Pty 5518g; = 0) = 3gvgp(Bgj, 5515 = 0)
= ggvg/P(BAgi\U?, & = 0)p(sglog *)m(og?)do,”

= [pdf for tg,+qy] x [pdf for Sngg,do]

Therefore,

2 2
tgj ~ tdg—i-do and Sz ™~ 50 ng’do

and they are independent
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Estimation of Hyperparameters

Want to use s2

; 2
2 across all genes to estimate sy and dy

Let zg = log sé% (Fisher's z):
© E(zg) = log s§ +1(dg/2) — /(do/2) + log(do/ dg)
® Var(zg) = ¢/(dg/2) +¢'(do/2)

Method of moments! Solve:

¥/(do/2) = Z[ —/(d/2)]

log 53 = — Z[zg (dg/2) + ¥(do/2) — log(do/dg)]
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Simulation Study - Setup

Data sets simulated under the assumed model:

Bg‘ﬁgv Oé ~ N(/Bg7 VgO’é)
sé]aé ~ Uéxf,g/dg
Bg|0—§7/8g 7é 0~ N(Oa Voaé)
a5 ~ Xap/(dosp)
Using the parameters:
e G = 15,000 (300 differentially expressed)
o d;=4,v;=1/3 vy=2, e =4

@ dyp = 1,4,1000, more to less variable
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Simulation Study - Setup

The following statistics were compared:
O Fold Change: M, = 3,

@ Ordinary t - Student (1908): t, = sfj@

o - Efron et al (2001): t; = (%Jrsfii)\/@
O Log Odds - Lonnstedt and Speed (2002):

P(Bs #0/Bg, 5%, -5
P(Bs =0|Bg,52,...,s

By = log

© Moderated t - My paper!: t, = Pe
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Simulation Study - Results

Different Variances ( dop=1)
—— Moderated t (AUC = 0.7531) P
— Ordinary t (AUC = 0.7485)
Offsett (AUC = 0.7121) /
—— Log Odds (AUC = 0.6883) &
—— Fold Change (AUC = 0.6878) R4
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Simulation Study - Results

Balanced Variances ( do =4)
@ -| = Moderated t (AUC = 0.7589) /
— | = Log Odds (AUC = 0.7589)
Offsett (AUC = 0.7575) s
—— Fold Change (AUC = 0.7478) /
—— Ordinary t (AUC = 0.7475) 7
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Simulation Study - Results

Similar Variances ( do = 1000)
@ -| = Moderated t (AUC = 0.7702) ’
= —— Fold Change (AUC = 0.7702) ’
—— Log Odds (AUC = 0.7676) e
Offsett (AUC = 0.7669) L
—— Ordinary t (AUC =0.7484) s
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Simulation Study - Redux

Unfair to simulate data from the assumed hierarchical model?

Everything the same except:

O Relationship between mean and variance

Bg‘ﬁgyaé ~ N(Bg, vg(1 + \Jﬁgl)aﬁ)

slog ~ (14 |Bgl)ozx3, / de

@ Chi-square mixture for variance

2
&Xi+ﬁ+><%ooo
3\1 4 " 1000

2 2
sg|ag ~
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Simulation

Study - Redux

# False Positives

150

100

50

Balanced Variances ( do = 4) - Mean/Variance Relationship

Fold Change (AUC = 0.7404) P
Offsett (AUC = 0.7044) -
Log Odds (AUC = 0.6796) .
Moderated t (AUC = 0.6740) P
Ordinary t (AUC = 0.6178) .

50 100 150 200

# Genes Selected
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Simulation Study - Red

Balanced Variances ( do = 4) - Chi-Square Mixture
@ | — LogOdds (AUC = 0.7619) .
f Ve
— —— Ordinary t (AUC =0.7617) .
Offsett (AUC = 0.7594) 7
—— Moderated t (AUC = 0.7574) R
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Model Expansion

Can | extend the methods in the paper to handle the
mean /variance model?

Recall:

Bg‘ﬁgvaé ~ N(Bg, vg(1 + ‘e5g|)‘7§)
sglog ~ (1 +18¢1)o5x5, / dg
Pr(Bg #0) =p
Beloz, Bg # 0 ~ N(0, voo3)

0z ~ Xay/ (dos)
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Model Expansion

Now we have

A -1
. dgs; (Bg — Be)?
-2 2 £°g 2 g ~g 2
0, %|Be, By S5 ~ + dosi + X
s Vs P % (H/sg\ O (T I])) Nt

Can no longer estimate ag from hyperparameters alone.

Instead, consider the posterior probability of differential expression:

Pr(Bg = 0/Bg, 55, 05) o (1 = p) - p(Bg. 5718 = 0,0%)
Pr(Bg # O|Bga 5377 Ué) xXp- P(Bga 5§|5g # 0, Uzr)

=p- / P(BelBe, 03) - p(sz|Bg. 03) - m(Bglog)d g
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Model Expansion

Empirical Bayes can now be performed using an EM algorithm:

@ E-step - Estimate 3;|8, # 0, Uz,, and Zg = 15,0 using
MCMC

@ M-step - Estimate hyperparameters sg, do, p, and vy by
maximizing (g, a§|sg, do, p, Vo)

Result: posterior log-odds

B. —lo Pr(Bg # 0|Bg75§>(7§)
&~ 8\ Pr(Bs = 055, 52,02)

(Note: Each EM iteration has an MCMC, and each MCMC
iteration has a numerical integration)
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Simulation St

# False Positives
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20

y - Model Expansi

Balanced Variances ( do = 4) - Mean/Variance Relationship

Log Odds (me) (AUC = 0.7880) »
Fold Change (AUC =0.7418) P
Offsett  (AUC =0.7101) L7

Log Odds (L-S) (AUC = 0.6947) -’
Moderated t (AUC = 0.6719) s

Ordinaryt (AUC = 0.6180) -
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Aaron Baraff ing Differential Expression in Microarray Experiments



Conclusions

Empirical Bayes method provides a way to share information
across many genes

Broad use across general microarray experiment designs (as
well as other -omics experiments)

Doesn't really solve the problem of performing inference, but
allows for classification

Simulation studies show that the method works well ...
. so long as the model is correctly specified
Method can be modified for other models ... but it isn't pretty

Can the method be modified to be robust under model
misspecification?
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All donel

(Chances are slim that anyone will see this slide because | have
probably been cut off for time by now.)
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