The Analysis of Placement Values for Evaluating Discriminatory Measures

Margaret Sullivan Pepe & Tianxi Cai Biometrics (2004)

Allison Meisner · April 22, 2014

Overview

This paper relates ROC curves and AUC to the distribution of placement values and uses these placement values to motivate a new approach for making inference about ROC curves and AUC.

Overview

This paper relates ROC curves and AUC to the distribution of placement values and uses these placement values to motivate a new approach for making inference about ROC curves and AUC.

Scientific Motivation

- ▶ When building a risk prediction model, it may be the case that discriminative ability is affected by covariates.
- ▶ For example, we may believe that a given marker discriminates disease better in men than women. These differences are important to identify so that we know where to apply our risk prediction model.

Statistical Motivation

As with Alonzo and Pepe (2002), the idea here is to fit the problem of covariate effects on discrimination into the regression framework.

- ▶ Alonzo and Pepe (2002) proposed an algorithm for fitting this regression model involving binary GLMs.
- ▶ After recognizing the connection between placement values (PVs) and the ROC curve (first identified by Hanley and Haijian-Tilaki (1997)), Pepe and Cai considered using PVs in a regression model.

- ▶ Demonstrate the importance of placement values
 - ▶ For a continuous measure Y, the placement value of Y is the proportion of the nondiseased (reference population) with values larger than Y:

$$U = 1 - F_{\overline{D}}(Y)$$

▶ The distribution of placement values in the diseased (affected population) tells us about the discriminative ability of Y: if $U_D \sim \text{Uniform}(0,1)$, then Y has no discriminative ability.

▶ Let's recall how these densities relate to **TPR**:

▶ Let's recall how these densities relate to **TPR**:

▶ Let's recall how these densities relate to **TPR**:

► And how these densities relate to **FPR**:

► And how these densities relate to **FPR**:

► And how these densities relate to **FPR**:

▶ Now, let's see how these densities relate to PVs:

▶ Now, let's see how these densities relate to **PVs**:

▶ Now, let's see how these densities relate to **PVs**:

- ▶ Demonstrate the importance of placement values
 - ▶ We have

$$ROC(u) = \text{TPR at FPR of } u$$

$$= P(Y_D \ge F_{\overline{D}}^{-1}(1-u))$$

$$= P(1-u \le F_{\overline{D}}(Y_D))$$

$$= P(1-F_{\overline{D}}(Y_D) \le u)$$

$$= P(U_D \le u),$$

demonstrating the connection between the ROC and the CDF of the PVs.

Note also that since the expected value of a random variable is the area under its (1 - cdf), we have $AUC = E(1 - U_D)$.

- ► Account for covariates
 - ► Covariate-specific PVs: covariates **Z** may affect the distribution of Y in the reference population, which motivates covariate-specific PVs,

$$U = 1 - F_{\overline{D}, \mathbf{Z}}(Y)$$

- ► Account for covariates
 - ► Covariate-specific PVs: covariates **Z** may affect the distribution of Y in the reference population, which motivates covariate-specific PVs,

$$U = 1 - F_{\overline{D}, \mathbf{Z}}(Y)$$

- ► Account for covariates
 - ▶ Covariate effects on discrimination: the distribution of U may depend on covariates \mathbf{Z}_D if discrimination is better in certain settings \Rightarrow regression models for U_D can quantify such covariate effects:

$$H_{\alpha}(U_D) = -\boldsymbol{\beta}^T \mathbf{Z}_D + \epsilon, \ \epsilon \sim g(\cdot).$$

- ► Account for covariates
 - ► Connection with ROC regression: can show* that the model

$$H_{\alpha}(U_D) = -\boldsymbol{\beta}^T \mathbf{Z}_D + \epsilon$$

is equivalent to the class of ROC regression models expressed as (Pepe (1997))

$$ROC_{\mathbf{Z},\mathbf{Z}_D}(u) = g\{\boldsymbol{\beta}^T\mathbf{Z}_D + H_{\boldsymbol{\alpha}}(u)\}.$$

This can be interpreted as the separation between subjects in the reference population with covariates \mathbf{Z} to those in the affected population with covariates $(\mathbf{Z}, \mathbf{Z}_D)$.

► Connection with AUC regression: can interpret AUC regression models as models for mean PVs

Proposal

- ► These results imply that ROC analysis ↔ analysis of PVs.
- ► Idea: leverage this finding to improve efficiency of parameter estimation.
 - ▶ This is accomplished by a pseudo-likelihood function and semi-parametric estimation of $F_{\overline{D},\mathbf{Z}}$ (details next time).
- Additionally, a method for fitting AUC regression models based on GLM IRWLS is proposed based on the connection between AUC regression and mean PVs.

- ▶ Used simulations to
 - ► assess the properties of the pseudo-likelihood approach to ROC regression
 - ► compare the pseudo-likelihood approach to the binary regression approach of Alonzo and Pepe (2002) for ROC regression
- ► Analyzed FEV data using the proposed ROC and AUC regression methods

Research Landscape

- ▶ Placement values have been commonly used in some areas of medicine for decades; for example, a child's height/weight is typically reported as a percentile relative to some healthy population.
- ► Previous papers recognized the connection between the ROC curve and PVs (Hanley and Haijian-Tilaki, 1997).
- ▶ ROC regression was proposed by Pepe (1997) and further discussed by Alonzo and Pepe (2002), who proposed fitting these models using binary GLM.
- ▶ AUC regression and similar methods were proposed by several groups, including Thompson and Zucchini (1989), Dorfman, Berbaum and Metz (1992) and Dodd and Pepe (2003).

Impact of Pepe & Cai

Pepe & Cai accomplished several things:

- 1. Highlighted the relationship between PVs and ROC/AUC
- 2. Leveraged this relationship to develop a more efficient method for ROC regression
- 3. Used the connection between PVs and AUC to propose a method for AUC regression based on mean PVs