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Quick Review

Recall that when we have a continuous test Y and a binary
outcome D, the ROC curve plots the (FPR, TPR) pairs for
each possible cutoff of the test.

Problem: The ROC curve may differ by patient
characteristics. Identifying such variability helps us to apply the
test in an optimal way.

Solution: ROC regression with placement values (PVs)
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Definitions & Derivations

I Definitions
I Placement values: UDi = 1− FD(YDi) for the ith diseased

subject
If ZD affects the distribution of Y in the reference
population, UDi

= 1− FD,ZD
(YDi

)

I ROC curve: ROC(u) = P (YD ≥ F−1

D
(1− u)) = (TPR at

FPR=u)

I Relationship between ROC and placement values

ROC(u) = P (YD ≥ F−1
D

(1− u)) = P (1− u ≤ FD(YD))

= P (1− FD(YD) ≤ u) = P (UD ≤ u)
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Definitions & Derivations

I ROC model (Pepe, 1997): ROCZD
(u) = g(βTZD +Hα(u))

I Proposed model: Hα(UD) = −βTZD + ε, where ε ∼ g
I Proof of equivalence:

Pr(UD ≤ u) = Pr(Hα(UD) ≤ Hα(u))

= Pr(−βTZD + ε ≤ Hα(u))

= Pr(ε ≤ βTZD +Hα(u))

= g(βTZD +Hα(u)) = ROCZD
(u)

Recall that if ZD affects the distribution of Y in the
reference population, UDi = 1− FD,ZD

(YDi); then we may

write
ROCZD,ZD

(u) = g(βTZD +Hα(u))
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Algorithm

Since Pr(UD ≤ u) = g(βTZD +Hα(u)), we know the density
function is

f(u) =
∂g(βTZD +Hα(u))

∂u
.

Then, for u ∈ [a, b], the log likelihood is

`(θ) =

nD∑
i=1

[I(UDi < a)log{g(βTZDi +Hα(a))}

+ I(UDi > b)log{1− g(βTZDi +Hα(b))}
+ I(UDi ∈ (a, b))logf(UDi)]

where θ = (α,β).
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Algorithm

Estimating FD,ZD

I Pepe and Cai advise estimating FD,ZD
nonparametrically if

ZD is discrete and semiparametrically otherwise.

I For semiparametric estimation, Pepe and Cai recommend
the semiparamtric regression quantile estimation procedure
developed by Heagerty and Pepe (1999).

The estimates of the placement values, ÛDi , are substituted into
`(θ), yielding a pseudo-log-likelihood, which is maximized to
estimate θ.
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Simulations

Set-up

I YD = α−1
1 {α0 + β1Z1 + (β2 + 0.5α1)Z2 + εD}

YD = 0.5Z2 + εD
I Z1 ∼ Bernoulli(0.5), Z2 ∼ Uniform(0, 1)

I εD ∼ N(0, 1), εD ∼ N(0, 1)

Induced ROC curve:

ROCZ
D

,ZD (u) = Pr(UD ≤ u) = Pr(1− FD(Y ) ≤ u)

= Pr(1− u ≤ FD(Y ))

= Pr(F−1

D
(1− u) ≤ α−1

1 {α0 + β1z1 + (β2 + 0.5α1)z2 + εD)

= Pr(Φ−1(1− u) + 0.5z2 ≤
α−1
1 {α0 + β1z1 + (β2 + 0.5α1)z2 + εD})

= Pr(εD ≤ −α1Φ−1(1− u) + α0 + β1z1β2z2)

= Φ(α1Φ−1(u) + α0 + β1z1 + β2z2) = g(βTZD +Hα(u))
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Simulations

Despite their recommendations, Pepe and Cai estimated
placement values parametrically. (!) Note that here

ZD = Z2 and ZD = (Z1, Z2).

Pepe and Cai regress Y on Z2 among the non-diseased subjects:

E(YD|Z2 = z2) = γ0 + γ1z2 ⇒ ε̂Di
= YDi

− γ̂0 − γ̂1z2Di
.

Then the placement value for subject i was estimated to be

ÛDi =
1

nD

nD∑
j=1

I(ε̂Dj
> YDi − γ̂0 − γ̂1z2Di).
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Simulations

Two sets of simulations (1000 simulations):

1. Pepe and Cai method only
I Bias
I Empirical SE
I Mean estimated SE (from 500 bootstrap samples)
I Empirical coverage probability
I Note: α0 = 1, α1 = 1, β1 = 0.5, β2 = 0.7 throughout
I Considered [a, b] = [0.01, 0.99] and [a, b] = [0.01, 0.20]

2. Pepe and Cai vs. Alonzo and Pepe
I Bias
I MSE
I Two sets of parameter values considered
I Considered [a, b] = [0.01, 0.99] and [a, b] = [0.01, 0.50]
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Simulations: Pepe and Cai
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Simulations: Pepe and Cai
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Next Steps

I Simulations with competing method

I Real data example

I Impact of nonlinear relationship between YD and Z2

and/or impact of non-constant variance
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Competing Method: Alonzo and Pepe

Alonzo and Pepe proposed an algorithm for fitting ROC
regression based on binary regression methods.

1. Choose a set of values in [a, b] denoted by
T = {u1, ..., unT } = {1− j/nD; j = 1, ..., nD − 1}.

2. Then for each diseased subject i, the nT binary variables
Bui are calculated:

Bui = I[ÛDi ≤ u], u ∈ T.

3. The binary generalized linear regression model

E{Bui} = g{βTZD +Hα(u)}

is fit using standard techniques.
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Simulations: Comparing Methods

I nD = nD = 50

I a = 0.01, b = 0.99

I α0 = 1, α1 = 1, β1 = 0.5, β2 = 0.7
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Simulations: Comparing Methods

I nD = nD = 50

I a = 0.01, b = 0.50

I α0 = 1, α1 = 1, β1 = 0.5, β2 = 0.7
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Simulations: Comparing Methods

I nD = 50, nD = 100

I a = 0.01, b = 0.99

I α0 = 1, α1 = 1, β1 = 0.5, β2 = 0.7
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I nD = nD = 50

I a = 0.01, b = 0.99
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I nD = nD = 50

I a = 0.01, b = 0.50
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I nD = 50, nD = 100

I a = 0.01, b = 0.99

I α0 = 1.5, α1 = 0.9, β1 = 0.5, β2 = 0.7
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Simulations: Comparing Methods

I nD = 50, nD = 100

I a = 0.01, b = 0.50

I α0 = 1.5, α1 = 0.9, β1 = 0.5, β2 = 0.7
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Next Steps

I Real data example

I Impact of nonlinear relationship between YD and Z2

and/or impact of non-constant variance
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