The Analysis of Placement Values for Evaluating Discriminatory Measures

Margaret Sullivan Pepe & Tianxi Cai Biometrics (2004)

Allison Meisner · May 6, 2014

Recall that when we have a continuous test Y and a binary outcome D, the ROC curve plots the (FPR, TPR) pairs for each possible cutoff of the test.

Problem: The ROC curve may differ by patient characteristics. Identifying such variability helps us to apply the test in an optimal way.

Solution: ROC regression with placement values (PVs)

$$\Rightarrow Z_{\overline{D}} = \text{center}, Z_D = \text{sex}$$

Definitions & Derivations

- Definitions
 - ▶ Placement values: $U_{D_i} = 1 F_{\overline{D}}(Y_{D_i})$ for the i^{th} diseased subject

 If $Z_{\overline{D}}$ affects the distribution of Y in the reference population, $U_{D_i} = 1 F_{\overline{D},Z_{\overline{D}}}(Y_{D_i})$
 - ▶ ROC curve: $ROC(u) = P(Y_D \ge F_{\overline{D}}^{-1}(1-u)) = (\text{TPR at FPR=u})$
- ► Relationship between ROC and placement values

$$ROC(u) = P(Y_D \ge F_{\overline{D}}^{-1}(1-u)) = P(1-u \le F_{\overline{D}}(Y_D))$$

= $P(1-F_{\overline{D}}(Y_D) \le u) = P(U_D \le u)$

Definitions & Derivations

- ► ROC model (Pepe, 1997): $ROC_{Z_D}(u) = g(\beta^T Z_D + H_{\alpha}(u))$
- ▶ Proposed model: $H_{\alpha}(U_D) = -\beta^T Z_D + \epsilon$, where $\epsilon \sim g$
- ▶ Proof of equivalence:

$$Pr(U_D \le u) = Pr(H_{\alpha}(U_D) \le H_{\alpha}(u))$$

$$= Pr(-\beta^T Z_D + \epsilon \le H_{\alpha}(u))$$

$$= Pr(\epsilon \le \beta^T Z_D + H_{\alpha}(u))$$

$$= g(\beta^T Z_D + H_{\alpha}(u)) = ROC_{Z_D}(u)$$

Recall that if $Z_{\overline{D}}$ affects the distribution of Y in the reference population, $U_{D_i} = 1 - F_{\overline{D}, Z_{\overline{D}}}(Y_{D_i})$; then we may write

$$ROC_{Z_{\overline{D}},Z_D}(u) = g(\beta^T Z_D + H_{\alpha}(u))$$

Algorithm

Since $Pr(U_D \leq u) = g(\boldsymbol{\beta}^T Z_D + H_{\boldsymbol{\alpha}}(u))$, we know the density function is

$$f(u) = \frac{\partial g(\boldsymbol{\beta}^T Z_D + H_{\boldsymbol{\alpha}}(u))}{\partial u}.$$

Then, for $u \in [a, b]$, the log likelihood is

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{N} [I(U_{D_i} < a) \log \{g(\boldsymbol{\beta}^T Z_{D_i} + H_{\boldsymbol{\alpha}}(a))\}$$

$$+ I(U_{D_i} > b) \log \{1 - g(\boldsymbol{\beta}^T Z_{D_i} + H_{\boldsymbol{\alpha}}(b))\}$$

$$+ I(U_{D_i} \in (a, b)) \log f(U_{D_i})]$$

where $\boldsymbol{\theta} = (\boldsymbol{\alpha}, \boldsymbol{\beta})$.

Algorithm

Estimating $F_{\overline{D},Z_{\overline{D}}}$

- ▶ Pepe and Cai advise estimating $F_{\overline{D},Z_{\overline{D}}}$ nonparametrically if $Z_{\overline{D}}$ is discrete and semiparametrically otherwise.
- ▶ For semiparametric estimation, Pepe and Cai recommend the semiparametric regression quantile estimation procedure developed by Heagerty and Pepe (1999).

The estimates of the placement values, \hat{U}_{D_i} , are substituted into $\ell(\boldsymbol{\theta})$, yielding a pseudo-log-likelihood, which is maximized to estimate $\boldsymbol{\theta}$.

Simulations

Set-up

$$Y_D = \alpha_1^{-1} \{ \alpha_0 + \beta_1 Z_1 + (\beta_2 + 0.5\alpha_1) Z_2 + \epsilon_D \}$$

$$Y_{\overline{D}} = 0.5 Z_2 + \epsilon_{\overline{D}}$$

- ▶ $Z_1 \sim \text{Bernoulli}(0.5), Z_2 \sim \text{Uniform}(0,1)$
- $\bullet \ \epsilon_D \sim N(0,1), \ \epsilon_{\overline{D}} \sim N(0,1)$

Induced ROC curve:

$$ROC_{Z_{\overline{D}},Z_{D}}(u) = Pr(U_{D} \leq u) = Pr(1 - F_{\overline{D}}(Y) \leq u)$$

$$= Pr(1 - u \leq F_{\overline{D}}(Y))$$

$$= Pr(F_{\overline{D}}^{-1}(1 - u) \leq \alpha_{1}^{-1}\{\alpha_{0} + \beta_{1}z_{1} + (\beta_{2} + 0.5\alpha_{1})z_{2} + \epsilon_{D})$$

$$= Pr(\Phi^{-1}(1 - u) + 0.5z_{2} \leq \alpha_{1}^{-1}\{\alpha_{0} + \beta_{1}z_{1} + (\beta_{2} + 0.5\alpha_{1})z_{2} + \epsilon_{D}\})$$

$$= Pr(\epsilon_{D} \leq -\alpha_{1}\Phi^{-1}(1 - u) + \alpha_{0} + \beta_{1}z_{1}\beta_{2}z_{2})$$

$$= \Phi(\alpha_{1}\Phi^{-1}(u) + \alpha_{0} + \beta_{1}z_{1} + \beta_{2}z_{2}) = q(\beta^{T}Z_{D} + H_{\Omega}(u))$$

Simulations

Despite their recommendations, Pepe and Cai estimated placement values parametrically. (!) Note that here

$$Z_{\overline{D}} = Z_2$$
 and $Z_D = (Z_1, Z_2)$.

Pepe and Cai regress Y on Z_2 among the non-diseased subjects:

$$E(Y_{\overline{D}}|Z_2=z_2)=\gamma_0+\gamma_1z_2 \ \Rightarrow \ \hat{\epsilon}_{\overline{D}_i}=Y_{\overline{D}_i}-\hat{\gamma}_0-\hat{\gamma}_1z_{2\overline{D}_i}.$$

Then the placement value for subject i was estimated to be

$$\hat{U}_{D_i} = \frac{1}{n_{\overline{D}}} \sum_{j=1}^{n_{\overline{D}}} I(\hat{\epsilon}_{\overline{D}_j} > Y_{D_i} - \hat{\gamma}_0 - \hat{\gamma}_1 z_{2D_i}).$$

Simulations

Two sets of simulations (1000 simulations):

- 1. Pepe and Cai method only
 - ▶ Bias
 - ► Empirical SE
 - ► Mean estimated SE (from 500 bootstrap samples)
 - ► Empirical coverage probability
 - Note: $\alpha_0 = 1, \alpha_1 = 1, \beta_1 = 0.5, \beta_2 = 0.7$ throughout
 - Considered [a, b] = [0.01, 0.99] and [a, b] = [0.01, 0.20]
- 2. Pepe and Cai vs. Alonzo and Pepe
 - ▶ Bias
 - ► MSE
 - ► Two sets of parameter values considered
 - Considered [a, b] = [0.01, 0.99] and [a, b] = [0.01, 0.50]

Simulations: Pepe and Cai

Results for a = 0.01, b = 0.99

Empirical & Estimated SE

Coverage of 95% CIs

Simulations: Pepe and Cai

Results for a = 0.01, b = 0.20

Empirical & Estimated SE

Coverage of 95% CIs

Next Steps

- ► Simulations with competing method
- ► Real data example
- ▶ Impact of nonlinear relationship between $Y_{\overline{D}}$ and Z_2 and/or impact of non-constant variance

Competing Method: Alonzo and Pepe

Alonzo and Pepe proposed an algorithm for fitting ROC regression based on binary regression methods.

- 1. Choose a set of values in [a,b] denoted by $T = \{u_1,...,u_{n_T}\} = \{1-j/n_{\overline{D}};\ j=1,...,n_{\overline{D}}-1\}.$
- 2. Then for each diseased subject i, the n_T binary variables B_{ni} are calculated:

$$B_{ui} = I[\hat{U}_{D_i} \le u], \ u \in T.$$

3. The binary generalized linear regression model

$$E\{B_{ui}\} = g\{\beta^T Z_D + H_{\alpha}(u)\}$$

is fit using standard techniques.

- $n_D = n_{\overline{D}} = 50$
- \bullet a = 0.01, b = 0.99
- \bullet $\alpha_0 = 1, \alpha_1 = 1, \beta_1 = 0.5, \beta_2 = 0.7$

- $n_D = n_{\overline{D}} = 50$
- \bullet a = 0.01, b = 0.50
- \bullet $\alpha_0 = 1, \alpha_1 = 1, \beta_1 = 0.5, \beta_2 = 0.7$

- ▶ $n_D = 50, n_{\overline{D}} = 100$
- \bullet a = 0.01, b = 0.99
- \bullet $\alpha_0 = 1, \alpha_1 = 1, \beta_1 = 0.5, \beta_2 = 0.7$

- $n_D = 50, n_{\overline{D}} = 100$
- \bullet a = 0.01, b = 0.50
- \bullet $\alpha_0 = 1, \alpha_1 = 1, \beta_1 = 0.5, \beta_2 = 0.7$

- $n_D = n_{\overline{D}} = 50$
- \bullet a = 0.01, b = 0.99
- \bullet $\alpha_0 = 1.5, \alpha_1 = 0.9, \beta_1 = 0.5, \beta_2 = 0.7$

- $n_D = n_{\overline{D}} = 50$
- \bullet a = 0.01, b = 0.50
- \bullet $\alpha_0 = 1.5, \alpha_1 = 0.9, \beta_1 = 0.5, \beta_2 = 0.7$

- ▶ $n_D = 50, n_{\overline{D}} = 100$
- \rightarrow a = 0.01, b = 0.99
- \bullet $\alpha_0 = 1.5, \alpha_1 = 0.9, \beta_1 = 0.5, \beta_2 = 0.7$

- ▶ $n_D = 50, n_{\overline{D}} = 100$
- \rightarrow a = 0.01, b = 0.50
- \bullet $\alpha_0 = 1.5, \alpha_1 = 0.9, \beta_1 = 0.5, \beta_2 = 0.7$

Next Steps

- ► Real data example
- ▶ Impact of nonlinear relationship between $Y_{\overline{D}}$ and Z_2 and/or impact of non-constant variance