The Analysis of Placement Values for Evaluating Discriminatory Measures

Margaret Sullivan Pepe & Tianxi Cai

Allison Meisner · May 27, 2014
Overview

When we have a continuous test Y and a binary outcome D, the ROC curve plots the (FPR, TPR) pairs for each possible cutoff of the test.

Problem: The ROC curve may differ by patient characteristics. Identifying such variability helps us to apply the test in an optimal way.

Solution: ROC regression *with placement values*
Motivating Example

Prostate-specific antigen (PSA) is a popular, though controversial, way to screen men for prostate cancer (PCa).

The biology of PSA and PCa has implications for the usefulness of PSA as a screening tool:

- PSA levels differ by age: older men typically have higher PSA, regardless of PCa status
- Age can potentially affect the ability of PSA to discriminate PCa cases
- Among PCa cases, PSA measured closer to diagnosis does a better job of discriminating PCa
Background: FPR, TPR, ROC
Background: FPR, TPR, ROC
Background: FPR, TPR, ROC
Background: FPR, TPR, ROC

ROC(u) = TPR for FPR = u

FPR
TPR

Density

PSA
Background: Effect of Covariates on ROC

Age < 50 (Younger Men)

Age > 50 (Older Men)
Background: Effect of Covariates on ROC

Age < 50 (Younger Men)

Age > 50 (Older Men)
Background: Effect of Covariates on ROC

Age < 50 (Younger Men)

Age > 50 (Older Men)
Background: Effect of Covariates on ROC

Age < 50 (Younger Men)

- no PCa
- far from dx
- close to dx
- cutoff

PSA

Density
Background: Effect of Covariates on ROC

Age < 50 (Younger Men)

Density vs. PSA

- no PCa
- far from dx
- close to dx
- cutoff

FPR
Background: Effect of Covariates on ROC

Age < 50 (Younger Men)

- no PCa
- far from dx
- close to dx
- cutoff

TPR(1)
Background: Effect of Covariates on ROC

Age < 50 (Younger Men)

- no PCa
- far from dx
- close to dx
- cutoff

TPR(2)

Density

PSA
Background: Effect of Covariates on ROC

Recall, \(ROC(u) = (\text{TPR at FPR} = u) \).
ROC Model

- ROC model (Pepe, 1997): $ROC_{Z_D}(u) = g(\beta^T Z_D + H\alpha(u))$
 - α = underlying shape of ROC curve
 - β = impact of Z_D on shape of ROC curve

Problem: estimation

- Pepe (2000) and Alonzo and Pepe (2002) create indicators $I(Y_{Di} \geq F_{D}^{-1}(1 - u))$ for some set of FPRs u and then use binary regression techniques
- Pepe & Cai propose using placement values and what is known about their distribution to estimate the parameters more efficiently
Placement Values

- **Definitions**
 - **Placement values:** $U_{Di} = 1 - F^D(Y_{Di})$ for the i^{th} diseased subject. In words, the placement value for the i^{th} diseased subject is the proportion of the reference (non-diseased) population with marker Y values above Y_{Di}.
 - If Z^D affects the distribution of Y in the reference population, $U_{Di} = 1 - F^D, Z^D(Y_{Di})$.
 - **ROC curve:** $ROC(u) = P(Y_D \geq F^{-1}_D(1 - u)) = (TPR \text{ at } FPR=u)$

- **Relationship between ROC and placement values**

\[
ROC(u) = P(Y_D \geq F^{-1}_D(1 - u)) = P(1 - u \leq F_D(Y_D)) \\
= P(1 - F_D(Y_D) \leq u) = P(U_D \leq u)
\]
Placement Values

Density

PSA

PV for PSA=4.25

no PCa
PCa
cutoff
Proposed Method

- ROC model (Pepe, 1997): \(ROC_{Z_D}(u) = g(\beta^T Z_D + H_\alpha(u)) \)
- Proposed model: \(H_\alpha(U_D) = -\beta^T Z_D + \epsilon \), where \(\epsilon \sim g \)
- Proof of equivalence:

\[
Pr(U_D \leq u) = Pr(H_\alpha(U_D) \leq H_\alpha(u)) \\
= Pr(-\beta^T Z_D + \epsilon \leq H_\alpha(u)) \\
= Pr(\epsilon \leq \beta^T Z_D + H_\alpha(u)) \\
= g(\beta^T Z_D + H_\alpha(u)) = ROC_{Z_D}(u)
\]

Recall that if \(Z_D \) affects the distribution of \(Y \) in the reference population, \(U_{Di} = 1 - F_{\overline{D},Z_D}(Y_{Di}) \); then we may write

\[
H_\alpha(U_D) = -\beta^T Z_D + \epsilon \Leftrightarrow ROC_{\overline{D},Z_D}(u) = g(\beta^T Z_D + H_\alpha(u))
\]

- In our example, \(Z_D = \text{age} \) and \(Z_D = (\text{age, time}) \).
Proposed Method: Algorithm

Since $Pr(U_D \leq u) = g(\beta^T Z_D + H_\alpha(u))$, we know the density function is

$$f(u) = \frac{\partial g(\beta^T Z_D + H_\alpha(u))}{\partial u}.$$

Then, for $[a, b] \subset (0, 1)$, the log likelihood is

$$\ell(\theta) = \sum_{i=1}^{n_D} [I(U_{Di} < a) \log\{g(\beta^T Z_{Di} + H_\alpha(a))\}$$
$$+ I(U_{Di} > b) \log\{1 - g(\beta^T Z_{Di} + H_\alpha(b))\}$$
$$+ I(U_{Di} \in (a, b)) \log f(U_{Di})]$$

where $\theta = (\alpha, \beta)$.
Proposed Method: Algorithm

Estimating F_{D,z_D}

- Pepe and Cai advise estimating F_{D,z_D} nonparametrically if Z_D is discrete and semiparametrically otherwise.
- For semiparametric estimation, Pepe and Cai recommend the semiparametric regression quantile estimation procedure developed by Heagerty and Pepe (1999).

The estimates of the placement values, \hat{U}_{Di}, are substituted into $\ell(\theta)$, yielding a pseudo-log-likelihood*, which is maximized to estimate θ.
Competing Method: Algorithm

Alonzo and Pepe proposed an algorithm for fitting ROC regression based on binary regression methods.

1. For \([a, b] \subset (0, 1)\), let

\[
T = \{u_1, ..., u_{n_T}\} = \{1 - j/n_D; \ j = 1, ..., n_D - 1\} \cap [a, b]
\]

(the maximal set).

2. Then for each diseased subject \(i\), the \(n_T\) binary variables \(B_{ui}\) are calculated:

\[
B_{ui} = I[\hat{U}_{Di} \leq u], \ u \in T.
\]

3. The binary generalized linear regression model

\[
E\{B_{ui}\} = g\{\beta^T Z_D + H_\alpha(u)\}
\]

is fit using standard techniques.

The Pepe and Cai method is claimed to be more efficient than that of Alonzo and Pepe.
Simulations

Set-up

- $Y_D = \alpha_1^{-1}\{\alpha_0 + \beta_1 Z_1 + (\beta_2 + 0.5\alpha_1)Z_2 + \epsilon_D\}$
- $Y_D = 0.5Z_2 + \epsilon_D$
- $Z_1 \sim \text{Bernoulli}(0.5), \ Z_2 \sim \text{Uniform}(0, 1)$
- $\epsilon_D \sim N(0, 1), \ \epsilon_D \sim N(0, 1)$

Induced ROC curve:

\[
\text{ROCD}_{Z_D, Z_D}(u) = \Pr(U_D \leq u) = \Pr(1 - F_D(Y_D) \leq u) \\
= \Pr(F_D^{-1}(1 - u) \leq \alpha_1^{-1}\{\alpha_0 + \beta_1 z_1 + (\beta_2 + 0.5\alpha_1)z_2 + \epsilon_D\}) \\
= \Pr(\Phi^{-1}(1 - u) + 0.5z_2 \leq \alpha_1^{-1}\{\alpha_0 + \beta_1 z_1 + (\beta_2 + 0.5\alpha_1)z_2 + \epsilon_D\}) \\
= \Pr(\epsilon_D \leq -\alpha_1 \Phi^{-1}(1 - u) + \alpha_0 + \beta_1 z_1 + \beta_2 z_2) \\
= \Phi(\alpha_1 \Phi^{-1}(u) + \alpha_0 + \beta_1 z_1 + \beta_2 z_2) = g(\beta^T Z_D + H_\alpha(u))
\]

Recall, $\alpha =$ shape of ROC, $\beta =$ effects of Z_D on ROC
Simulations

Note that here

\[\mathbf{Z}_{\overline{D}} = Z_2 \text{ and } \mathbf{Z}_D = (Z_1, Z_2). \]

Despite their recommendations, Pepe and Cai did not use the semiparametric method of Heagerty and Pepe to estimate placement values.

Instead, Pepe and Cai regress \(Y \) on \(Z_2 \) among the non-diseased subjects:

\[
E(Y_{\overline{D}}|Z_2 = z_2) = \gamma_0 + \gamma_1 z_2 \Rightarrow \hat{\epsilon}_{\overline{D}i} = Y_{\overline{D}i} - \hat{\gamma}_0 - \hat{\gamma}_1 z_{2\overline{D}i}.
\]

Then the placement value for subject \(i \) was estimated to be

\[
\hat{U}_{Di} = \frac{1}{n_{\overline{D}}} \sum_{j=1}^{n_{\overline{D}}} I(\hat{\epsilon}_{\overline{D}j} > Y_{Di} - \hat{\gamma}_0 - \hat{\gamma}_1 z_{2Di}).
\]
Simulations

Two sets of simulations (1000 simulations each):

1. Pepe and Cai method only
 - Bias
 - Empirical SE
 - Mean estimated SE
 - Empirical coverage probability
 - Note: $\alpha_0 = 1, \alpha_1 = 1, \beta_1 = 0.5, \beta_2 = 0.7$ throughout
 - Considered $[a, b] = [0.01, 0.99]$ and $[a, b] = [0.01, 0.20]$

2. Pepe and Cai vs. Alonzo and Pepe
 - Bias
 - MSE
 - Two sets of parameter values considered
 - $\alpha_0 = 1, \alpha_1 = 1, \beta_1 = 0.5, \beta_2 = 0.7$
 - $\alpha_0 = 1.5, \alpha_1 = 0.9, \beta_1 = 0.5, \beta_2 = 0.7$
 - Considered $[a, b] = [0.01, 0.99]$ and $[a, b] = [0.01, 0.50]$
Simulations: Pepe & Cai

- \([a, b] = [0.01, 0.99]\)
Simulations: Pepe & Cai vs. Alonzo & Pepe

- $\alpha_0 = 1$, $\alpha_1 = 1$, $\beta_1 = 0.5$, $\beta_2 = 0.7$
- $[a, b] = [0.01, 0.99]$
Application

The proposed method was applied to data from a study on PSA and PCa screening.

- 88 PCa cases, 88 age-matched controls
- Recall, $Z_D^\perp = \text{age}$ and $Z_D = (\text{age}, \text{time})$
- Model: $ROC_{Z_D^\perp, Z_D}(u) = \Phi(\alpha_0 + \alpha_1 \Phi^{-1}(u) + \beta_1 \text{time} + \beta_2 \text{age})$
- SE estimates from the bootstrap (500 replications)

<table>
<thead>
<tr>
<th></th>
<th>Estimate (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_0</td>
<td>4.30 (0.93)</td>
</tr>
<tr>
<td>α_1</td>
<td>0.84 (0.09)</td>
</tr>
<tr>
<td>β_1</td>
<td>-0.16 (0.03)</td>
</tr>
<tr>
<td>β_2</td>
<td>-0.04 (0.01)</td>
</tr>
</tbody>
</table>

![ROC curve graph](image.png)
Conclusions

- The proposed method has nice intuition behind it and makes full use of the data through placement values, as opposed to creating indicators.

- Implementation of the proposed method is less straightforward and is not particularly computationally efficient.

- In most scenarios, the proposed method is more statistically efficient than the binary regression technique.

- Both methods are susceptible to misspecification in both the estimation of F_D and the form of the ROC model.
Effects of Misspecification

What happens when

\[Y_D = 0.5Z_2^2 + N(0, (Z_2 + 0.5)^2) \]

but we still assume

\[Y_D = 0.5Z_2 + N(0, 1)? \]

This will impact

1. estimates of placement values
2. form of the induced ROC curve (used in the likelihood calculation)
Effects of Misspecification

$\alpha_0 = 1, \alpha_1 = 1, \beta_1 = 0.5, \beta_2 = 0.7$
Effects of Misspecification

$\alpha_0 = 1.5, \alpha_1 = 0.9, \beta_1 = 0.5, \beta_2 = 0.7$
Conclusions

▶ The proposed method has nice intuition behind it and makes full use of the data through placement values, as opposed to creating indicators.
▶ Implementation of the proposed method is less straightforward and is not particularly computationally efficient.
▶ In most scenarios, the proposed method is more statistically efficient than the binary regression technique.
▶ Both methods are susceptible to misspecification in both the estimation of F_D and the form of the ROC model.
Simulations: Pepe & Cai

\[[a, b] = [0.01, 0.20] \]
Simulations: Pepe & Cai vs. Alonzo & Pepe

▷ $\alpha_0 = 1, \alpha_1 = 1, \beta_1 = 0.5, \beta_2 = 0.7$

▷ $[a, b] = [0.01, 0.50]$
Simulations: Pepe & Cai vs. Alonzo & Pepe

- $\alpha_0 = 1.5$, $\alpha_1 = 0.9$, $\beta_1 = 0.5$, $\beta_2 = 0.7$
- $[a, b] = [0.01, 0.99]$
Simulations: Pepe & Cai vs. Alonzo & Pepe

\[\alpha_0 = 1.5, \alpha_1 = 0.9, \beta_1 = 0.5, \beta_2 = 0.7 \]

\[[a, b] = [0.01, 0.05] \]