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Overview

When we have a continuous test Y and a binary outcome D,
the ROC curve plots the (FPR, TPR) pairs for each possible
cutoff of the test.

Problem: The ROC curve may differ by patient
characteristics. Identifying such variability helps us to apply the
test in an optimal way.

Solution: ROC regression with placement values
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Motivating Example

Prostate-specific antigen (PSA) is a popular, though
controversial, way to screen men for prostate cancer (PCa).

The biology of PSA and PCa has implications for the usefulness
of PSA as a screening tool:

I PSA levels differ by age: older men typically have higher
PSA, regardless of PCa status

I Age can potentially affect the ability of PSA to
discriminate PCa cases

I Among PCa cases, PSA measured closer to diagnosis does
a better job of discriminating PCa
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Background: FPR, TPR, ROC
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Background: Effect of Covariates on ROC

Recall, ROC(u) = (TPR at FPR = u).
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ROC Model

I ROC model (Pepe, 1997): ROCZD
(u) = g(βTZD +Hα(u))

I α = underlying shape of ROC curve
I β = impact of ZD on shape of ROC curve

I Problem: estimation
I Pepe (2000) and Alonzo and Pepe (2002) create indicators
I(YDi ≥ F−1

D
(1− u)) for some set of FPRs u and then use

binary regression techniques
I Pepe & Cai propose using placement values and what is

known about their distribution to estimate the parameters
more efficiently
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Placement Values

I Definitions
I Placement values: UDi = 1− FD(YDi) for the ith diseased

subject. In words, the placement value for the ith diseased
subject is the proportion of the reference (non-diseased)
population with marker Y values above YDi.

I If ZD affects the distribution of Y in the reference
population, UDi = 1− FD,Z

D
(YDi).

I ROC curve: ROC(u) = P (YD ≥ F−1

D
(1− u)) = (TPR at

FPR=u)

I Relationship between ROC and placement values

ROC(u) = P (YD ≥ F−1
D

(1− u)) = P (1− u ≤ FD(YD))

= P (1− FD(YD) ≤ u) = P (UD ≤ u)
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Placement Values
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Proposed Method

I ROC model (Pepe, 1997): ROCZD
(u) = g(βTZD +Hα(u))

I Proposed model: Hα(UD) = −βTZD + ε, where ε ∼ g
I Proof of equivalence:

Pr(UD ≤ u) = Pr(Hα(UD) ≤ Hα(u))

= Pr(−βTZD + ε ≤ Hα(u))

= Pr(ε ≤ βTZD +Hα(u))

= g(βTZD +Hα(u)) = ROCZD
(u)

Recall that if ZD affects the distribution of Y in the
reference population, UDi = 1− FD,ZD

(YDi); then we may

write

Hα(UD) = −βTZD+ε ⇔ ROCZD,ZD
(u) = g(βTZD+Hα(u))

I In our example, ZD = age and ZD = (age, time).
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Proposed Method: Algorithm

Since Pr(UD ≤ u) = g(βTZD +Hα(u)), we know the density
function is

f(u) =
∂g(βTZD +Hα(u))

∂u
.

Then, for [a, b] ⊂ (0, 1), the log likelihood is

`(θ) =

nD∑
i=1

[I(UDi < a)log{g(βTZDi +Hα(a))}

+ I(UDi > b)log{1− g(βTZDi +Hα(b))}
+ I(UDi ∈ (a, b))logf(UDi)]

where θ = (α,β).
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Proposed Method: Algorithm

Estimating FD,ZD

I Pepe and Cai advise estimating FD,ZD
nonparametrically if

ZD is discrete and semiparametrically otherwise.

I For semiparametric estimation, Pepe and Cai recommend
the semiparamtric regression quantile estimation procedure
developed by Heagerty and Pepe (1999).

The estimates of the placement values, ÛDi, are substituted into
`(θ), yielding a pseudo-log-likelihood*, which is maximized to
estimate θ.
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Competing Method: Algorithm
Alonzo and Pepe proposed an algorithm for fitting ROC
regression based on binary regression methods.

1. For [a, b] ⊂ (0, 1), let

T = {u1, ..., unT } = {1− j/nD; j = 1, ..., nD − 1} ∩ [a, b]

(the maximal set).

2. Then for each diseased subject i, the nT binary variables
Bui are calculated:

Bui = I[ÛDi ≤ u], u ∈ T.

3. The binary generalized linear regression model

E{Bui} = g{βTZD +Hα(u)}

is fit using standard techniques.

The Pepe and Cai method is claimed to be more efficient
than that of Alonzo and Pepe.
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Simulations

Set-up

I YD = α−1
1 {α0 + β1Z1 + (β2 + 0.5α1)Z2 + εD}

YD = 0.5Z2 + εD
I Z1 ∼ Bernoulli(0.5), Z2 ∼ Uniform(0, 1)

I εD ∼ N(0, 1), εD ∼ N(0, 1)

Induced ROC curve:

ROCZ
D

,ZD (u) = Pr(UD ≤ u) = Pr(1− FD(YD) ≤ u)

= Pr(F−1

D
(1− u) ≤ α−1

1 {α0 + β1z1 + (β2 + 0.5α1)z2 + εD)

= Pr(Φ−1(1− u) + 0.5z2 ≤
α−1
1 {α0 + β1z1 + (β2 + 0.5α1)z2 + εD})

= Pr(εD ≤ −α1Φ−1(1− u) + α0 + β1z1 + β2z2)

= Φ(α1Φ−1(u) + α0 + β1z1 + β2z2) = g(βTZD +Hα(u))

Recall, α = shape of ROC, β = effects of ZD on ROC
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Simulations
Note that here

ZD = Z2 and ZD = (Z1, Z2).

Despite their recommendations, Pepe and Cai did not use the
semiparametric method of Heagerty and Pepe to estimate
placement values.

Instead, Pepe and Cai regress Y on Z2 among the non-diseased
subjects:

E(YD|Z2 = z2) = γ0 + γ1z2 ⇒ ε̂Di = YDi − γ̂0 − γ̂1z2Di.

Then the placement value for subject i was estimated to be

ÛDi =
1

nD

nD∑
j=1

I(ε̂Dj
> YDi − γ̂0 − γ̂1z2Di).
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Simulations

Two sets of simulations (1000 simulations each):

1. Pepe and Cai method only
I Bias
I Empirical SE
I Mean estimated SE
I Empirical coverage probability
I Note: α0 = 1, α1 = 1, β1 = 0.5, β2 = 0.7 throughout
I Considered [a, b] = [0.01, 0.99] and [a, b] = [0.01, 0.20]

2. Pepe and Cai vs. Alonzo and Pepe
I Bias
I MSE
I Two sets of parameter values considered

I α0 = 1, α1 = 1, β1 = 0.5, β2 = 0.7
I α0 = 1.5, α1 = 0.9, β1 = 0.5, β2 = 0.7

I Considered [a, b] = [0.01, 0.99] and [a, b] = [0.01, 0.50]
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Simulations: Pepe & Cai
I [a, b] = [0.01, 0.99]
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Simulations: Pepe & Cai vs. Alonzo & Pepe
I α0 = 1, α1 = 1, β1 = 0.5, β2 = 0.7
I [a, b] = [0.01, 0.99]
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Application
The proposed method was applied to data from a study on PSA
and PCa screening.

I 88 PCa cases, 88 age-matched controls

I Recall, ZD = age and ZD = (age, time)

I Model: ROCZD,ZD
(u) = Φ(α0 + α1Φ−1(u) + β1time + β2age)

I SE estimates from the bootstrap (500 replications)

Estimate (SE)

α0 4.30 (0.93)
α1 0.84 (0.09)
β1 -0.16 (0.03)
β2 -0.04 (0.01)
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Conclusions

I The proposed method has nice intuition behind it and
makes full use of the data through placement values, as
opposed to creating indicators.

I Implementation of the proposed method is less
straightforward and is not particularly computationally
efficient.

I In most scenarios, the proposed method is more
statistically efficient than the binary regression technique.

I Both methods are susceptible to misspecification in both
the estimation of FD and the form of the ROC model.
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Effects of Misspecification

What happens when

YD = 0.5Z2
2 +N(0, (Z2 + 0.5)2)

but we still assume

YD = 0.5Z2 +N(0, 1)?

This will impact

1. estimates of placement values

2. form of the induced ROC curve (used in the likelihood
calculation)
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Effects of Misspecification
I α0 = 1, α1 = 1, β1 = 0.5, β2 = 0.7
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Effects of Misspecification
I α0 = 1.5, α1 = 0.9, β1 = 0.5, β2 = 0.7
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Conclusions

I The proposed method has nice intuition behind it and
makes full use of the data through placement values, as
opposed to creating indicators.

I Implementation of the proposed method is less
straightforward and is not particularly computationally
efficient.

I In most scenarios, the proposed method is more
statistically efficient than the binary regression technique.

I Both methods are susceptible to misspecification in both
the estimation of FD and the form of the ROC model.
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Simulations: Pepe & Cai
I [a, b] = [0.01, 0.20]
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Simulations: Pepe & Cai vs. Alonzo & Pepe
I α0 = 1, α1 = 1, β1 = 0.5, β2 = 0.7
I [a, b] = [0.01, 0.50]
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Simulations: Pepe & Cai vs. Alonzo & Pepe
I α0 = 1.5, α1 = 0.9, β1 = 0.5, β2 = 0.7
I [a, b] = [0.01, 0.99]
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Simulations: Pepe & Cai vs. Alonzo & Pepe
I α0 = 1.5, α1 = 0.9, β1 = 0.5, β2 = 0.7
I [a, b] = [0.01, 0.0.5]
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