

Distribution-free ROC Analysis Using Binary Regression Techniques

Todd A. Alonzo and Margaret S. Pepe

As presented by: Andrew J. Spieker University of Washington Dept. of Biostatistics

Motivation	Key Points	CPAO Example	The End
Goals			

Overarching Goals:

• Identify diagnostic tests with ability to discriminate between states of health

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• Identify factors which influence diagnostic accuracy

Methodological Goal:

- Devise a method for ROC regression which:
 - Provides valid estimates
 - Is simple to implement
 - Is computationally efficient

- Y_0 and Y_1 : test values for *healthy* and *diseased* participants
- X: covariate(s) for all subjects
- X_1 : variables specific to diseased group
- S_0 and S_1 : survivor functions for Y_0 and Y_1 , respectively:
- ... meaning, $S_0(c) = P(Y_0 \ge c)$, and $S_1(c) = P(Y_1 \ge c)$

Key Observation

$$ROC_{Y_0,Y_1|X,X_1}(p) = S_1\left(S_0^{-1}(p|X)\Big|X,X_1
ight)$$

Motivation	Key Points	CPAO Example	The End
ROC			

Marker Units

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Inherently parametric methods

- Parametrically model the test results
- And determine the induced ROC curve

Model ROC curve directly rather than presume a distribution for the data

- Generalized linear model framework (2000)
 - Much easier to program, somewhat intuitive
 - Computationally less efficient than desirable

Inherently parametric methods

- Parametrically model the test results
- And determine the induced ROC curve

Model ROC curve directly rather than presume a distribution for the data

- Generalized linear model framework (2000)
 - Much easier to program, somewhat intuitive
 - Computationally less efficient than desirable

We observe Y- and X-values on n_0 healthy controls and n_1 diseased participants ...

Key Observation

• If
$$U_{ij} = \mathbf{1}(Y_{1j} \ge Y_{0i})$$
, then ...
 $\mathbb{E}[U_{ij}|S_0(Y_{0i}|X_i) = p, X_i, X_j, X_{1j}]$
 $= \mathbb{P}(Y_{1j} \ge Y_{0i}|S_0(Y_{0i}|X_i) = p, X_i, X_j, X_{1j})$
 $= \mathbb{P}(Y_{1j} \ge S_0^{-1}(p|X_i)|X_j, X_{1j})$
 $= S_1(S_0^{-1}(p|X_i)|X_j, X_{1j})$
 $= ROC_{Y_{0i}, Y_{1j}|X_i, X_j, X_{1j}}(p)$

We observe Y- and X-values on n_0 healthy controls and n_1 diseased participants . . .

Key Observation

• If
$$U_{ij} = \mathbf{1}(Y_{1j} \ge Y_{0i})$$
, then ...

$$\mathbb{E}[U_{ij}|S_0(Y_{0i}|X_i) = p, X_i, X_j, X_{1j}]$$

$$= \mathbb{P}(Y_{1j} \ge Y_{0i}|S_0(Y_{0i}|X_i) = p, X_i, X_j, X_{1j})$$

$$= \mathbb{P}(Y_{1j} \ge S_0^{-1}(p|X_i)|X_j, X_{1j})$$

$$= S_1(S_0^{-1}(p|X_i)|X_j, X_{1j})$$

$$= ROC_{Y_{0i}, Y_{1j}|X_i, X_j, X_{1j}}(p)$$

Motivation	Key Points	CPAO Example	The End
Estimatio	n of S_0		

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Motivation	Key Points	CPAO Example	The End
Estimation	r of S_{r}		

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Transitioning: Pepe (2000) \longrightarrow Alonzo & Pepe (2002)

Pepe (2000):

• If $U_{ij} = \mathbf{1}(Y_{1j} \ge Y_{0i})$, then $\mathbb{E}[U_{ij}|G_0(Y_{0i}|X_i) = p, X_i, X_j, X_{1i}] = \text{ROC}_{Y_{0i}, Y_{1j}|X_i, X_j, X_{1j}}(p)$

Alonzo & Pepe (2002):

- Estimate S_0 on a user-determined grid, G_ℓ
- If $U_{pj} = \mathbf{1}(Y_{1j} \ge \hat{S}_0^{-1}(p|X_i))$, then $\mathbb{E}[U_{pj}|X_j, X_{1j}] = \text{ROC}_{Y_{0i}, Y_{1j}|X_i, X_j, X_{1j}}(p)$

Motivation	Key Points	CPAO Example	The End
Estimation	r of S_{r}		

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Motivation	Key Points	CPAO Example	The End
Estimation	r of S_{r}		

・ロト・日本・日本・日本・日本・日本

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Transitioning: Pepe (2000) \longrightarrow Alonzo & Pepe (2002)

Pepe (2000):

• If $U_{ij} = \mathbf{1}(Y_{1j} \ge Y_{0i})$, then $\mathbb{E}[U_{ij}|G_0(Y_{0i}|X_i) = p, X_i, X_j, X_{1i}] = \text{ROC}_{Y_{0i}, Y_{1j}|X_i, X_j, X_{1j}}(p)$

Alonzo & Pepe (2002):

- Estimate S_0 on a user-determined grid, G_ℓ
- If $U_{pj} = \mathbf{1}(Y_{1j} \ge \hat{S}_0^{-1}(p|X_i))$, then $\mathbb{E}[U_{pj}|X_j, X_{1j}] = \text{ROC}_{Y_{0i}, Y_{1j}|X_i, X_j, X_{1j}}(p)$

If it looks like a GLM and "links" like a GLM...

Focusing attention on "binormal" setup (GLM with probit link):

$$\mathsf{ROC}_{Y_0,Y_1|X,X_1}(p) = \Phi(\alpha_0 + \alpha_1 \Phi^{-1}(p) + \beta_0 X + \beta_1 X_1).$$

 $\hat{\theta} = (\hat{\alpha}, \hat{\beta})^T$ solve the following estimating equations:

$$\sum_{eta\in G_\ell}\sum_{j=1}^{n_1} \mathbf{X}_{eta j} rac{\phi(z_{eta j})}{\Phi(z_{eta j})\left(1-\Phi(z_{eta j})
ight)} \left(U_{eta j}-\Phi(z_{eta j})
ight)=0,$$

where $\mathbf{X}_{pj} = (1, \Phi^{-1}(p), X_j, X_{1j})^T$, and $z_{pj} = \mathbf{X}_{pj}^T \boldsymbol{\theta}$.

We refer to this approach as ROC-GLM.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

Compare with Likelihood Approach

Assume:

- $Y_{0i}|X_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\gamma_0 + \zeta_0 X_i, \sigma_0^2) =_d P_{\tau_0}$
- $Y_{1j}|(X_j, X_{1j}) \stackrel{\text{iid}}{\sim} \mathcal{N}(\gamma_0 + \gamma_1 + (\zeta_0 + \zeta_1)X_j + \zeta_2 X_{1j}, \sigma_1^2) =_d P_{\tau_1}$

Then, defining $\boldsymbol{\tau} = (\gamma_0, \gamma_1, \zeta_0, \zeta_1, \sigma_0, \sigma_1)$:

•
$$\hat{\tau} = \arg \max_{\tau} \sum_{i=1}^{n_0} \log p_{\tau_0}(Y_{0i}; X_{0i}) + \sum_{j=1}^{n_1} \log p_{\tau_1}(Y_{1j}; X_j, X_{1j})$$

• $\operatorname{ROC}_{Y_0, Y_1 | X, X_1}(s) = \Phi\left(\frac{\gamma_1}{\sigma_1} + \frac{\sigma_0}{\sigma_1} \Phi^{-1}(p) + \frac{\zeta_1}{\sigma_1} X + \frac{\zeta_2}{\sigma_1} X_1\right).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 - のへで

- Reminder: Trade-off between computational and statistical efficiency based on G_{ℓ}
- Reminder: Efficiency loss of ROC-GLM when likelihood is correctly specified

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

• ROC-GLM robustness to misspecified ROC curve

Motivation	Key Points	Simulations	CPAO Example	The End
Simulation	Setup			

Consider case of no covariates, for simplicity.

- $Y_{0i} \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1); Y_{1j} \stackrel{\text{iid}}{\sim} \mathcal{N}\left(\alpha_0/\alpha_1, 1/\alpha_1^2\right)$
- ... this is done so that $\text{ROC}_{Y_0,Y_1}(p)$ is binormal with parameters α_0 and α_1

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- Scenario 1: $\alpha = (0.75, 0.90)$
- Scenario 2: $\alpha = (1.50, 0.85)$

Motivation	Key Points	Simulations	CPAO Example	The End
Simulatio	on Setun			

4 日 > 4 日 > 4 日 > 4 日 > 4 日 > 9 4 日 > 9 4 日 > 9 4 日 > 10 4 H > 10 4 H

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Efficiency with Choice of G_{ℓ}

 \textit{G}_ℓ divides the interval [0,1] into ℓ equally spaced subdivisions:

$$G_\ell = \left\{ rac{i}{\ell} : i = 1, \dots, \ell
ight\}$$

Goal: determine the effect of ℓ on statistical and computational efficiency.

Key Point

Simulations

590

Recall: Statistical Efficiency Loss

Consider $n_0 = n_1 = 200$: $\alpha = (0.75, 0.90)$

Number of Cut-Points

Number of Cut-Points

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Key Point

Simulations

Recall: Computational Efficiency Gain

 $\alpha = (0.75, 0.90)$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の へ ()・

Motivation	Key Points	Simulations	CPAO Example	The End
Simulatio	n Setun			

Consider case of no covariates, for simplicity.

- $Y_{0i} \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1); Y_{1j} \stackrel{\text{iid}}{\sim} \mathcal{N}\left(\alpha_0/\alpha_1, 1/\alpha_1^2\right)$
- ... this is done so that $\text{ROC}_{Y_0,Y_1}(p)$ is binormal with parameters α_0 and α_1

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Scenario 1: $\alpha = (0.75, 0.90)$
- Scenario 2: $\alpha = (1.50, 0.85)$
- $n_0 = n_1 = 50$
- G_{ℓ} is maximal ($\ell = 50$)

Motivation	Key Points	Simulations	CPAO Example	The End
Compariso	n to MI E			

Scenario 1: $\alpha = (0.75, 0.90)$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Motivation	Key Points	Simulations	CPAO Example	The End
Compariso	n to MI F			

Scenario 2: $\alpha = (1.50, 0.85)$

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ● ●

Model Misspecification

Suppose $Y_{0i} \stackrel{\text{iid}}{\sim} \text{Exponential}(2)$ and $Y_{1i} \stackrel{\text{iid}}{\sim} \text{Exponential}(4)$, so that

$$\operatorname{ROC}_{Y_0,Y_1}(p) = \exp\left(\frac{4}{2}\log(p)\right) = p^2.$$

Some Options:	Correct?	Hope works?
Exponential MLE	√	\checkmark
ROC-GLM (log-link)	1	\checkmark
Normal MLE	×	×
ROC-GLM (probit-link)	×	1

・ロト・日本・ヨト・ヨト・日・ シック

Motivation

Key Point

Simulations

CPAO Example

The End

Model Misspecification

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Motivation	Key Points	CPAO Example	The End
	12		

- Childhood Predictors of Adult Obesity Study (CPAO)
- 823 adults (133 obese and 690 non-obese)
- Determine whether childhood BMI can predict adult obesity
- Adjusted model: include age, sex (for everyone), and adult BMI (for the obese participants) in the model

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Motivation	Key Points	CPAO Example	The End
CPAO Exa	ample		

ROC-GLM Models for CPAO Data

Method	Estimate	Bootstrap S.E.	p-value
Adjusted:			
Intercept	0.150	0.376	0.69
Age	0.0669	0.0276	0.012
Gender	-0.284	0.238	0.23
Adult BMI	0.236	0.136	0.083
$\Phi^{-1}(p)$	0.923	0.0926	< 0.001

Table 4. Results of ROC regression analysis applied to the CPAO study

Variable	Coefficient	Standard error	<i>p</i> -value
Intercept	0.210	0.225	0.348
AGE (years)	0.080	0.014	< 0.0001
GENDER (female = 0, male = 1)	-0.313	0.185	0.090
<i>aBMIz</i> (<i>z</i> -score)	0.285	0.084	0.001
$\Phi^{-1}(t)$	1.140	0.069	< 0.0001

Motivation	Key Points	CPAO Example	The End
CPAO Exa	ample		

ヘロト ヘロト ヘヨト ヘヨト

æ

590

Motivation	Key Points	CPAO Example	The End
In Summar	M		

- Computational efficiency gains with fewer cut-points \checkmark
- ...at a cost of "statistical" efficiency ✗/✓
- Loss might be acceptable when working with an absolutely massive data set ✗/✓
- Robustness to model misspecification $\checkmark \checkmark \checkmark \checkmark \checkmark$
- \bullet We want a more compelling reason to adopt this method over full-size ${\it G}_\ell$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- Consider that part of the critique
- See "extra" slides on bootstrap estimation

Motivation	Key Points	CPAO Example	The End
Extra Slide	S		

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

- CPAO example interpretation
- Bootstrap standard errors

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

CPAO Example Interpretation

ROC-GLM	Models for	CPAO	Data
---------	------------	------	------

Method	Estimate	Bootstrap S.E.	p-value
Age	0.0669	0.0276	0.012

"Two obese adults of the same gender and adult BMI, but differing in age by one year, differ in estimated probability of having a BMI exceed the healthy quantiles of the same respective covariates by 0.0669 on the probit scale (with the older participant having the higher probability)"

Motivation	Key Points	CPAO Example	The End
Bootstrap			

Variance Estimation						
Scenario:	1	2				
lpha =	(0.75, 0.90)	(1.50, 0.85)				
$n_0 = n_1 =$	(50, 50)	(50, 50)				
Simulated	$Var[\hat{lpha}]$					
$\ell = 50$	(0.047, 0.026)	(0.094, 0.045)				
$\ell = 10$	(0.061, 0.043)	(0.11, 0.072)				
$\hat{Var}[\hat{lpha}]$						
$\ell = 50$	(0.030, 0.015)	(0.069, 0.027)				
$\ell = 10$	(0.065, 0.049)	(0.13, 0.077)				

・ロト・雪・・雪・・雪・・白・