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Motivation

Goals

Overarching Goals:

o Identify diagnostic tests with ability to discriminate between
states of health

@ ldentify factors which influence diagnostic accuracy

Methodological Goal:
@ Devise a method for ROC regression which:

e Provides valid estimates
e Is simple to implement
e Is computationally efficient



Motivation

Notation

@ Yp and Yi: test values for healthy and diseased participants
e X: covariate(s) for all subjects

@ Xj : variables specific to diseased group

@ 5o and S1: survivor functions for Yy and Y, respectively:

@ ...meaning, So(c) = P(Ypo > ¢), and Si(c) = P(Y1 > ¢)

Key Observation

ROCy, wiix.x(p) = S1 (S5(p1X)| X, %)
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Motivation

A Suitable Starting Point

Inherently parametric methods
@ Parametrically model the test results
@ And determine the induced ROC curve

Model ROC curve directly rather than presume a distribution for
the data
@ Generalized linear model framework (2000)

e Much easier to program, somewhat intuitive
e Computationally less efficient than desirable
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Key Points

Estimation (Pepe, 2000)

We observe Y- and X-values on ng healthy controls and n;
diseased participants ...

Key Observation

o If U,J = I(Ylj > Yo,'), then . ..
E[Uj|So(Yoi| Xi) = p, Xi, Xj, X1)]

= P(Yy > Y0ilSo( Yoi| Xi) = p, Xi, Xj, X1/)
= P(Y1j > S (p1X)|X), Xaj)

= S51(S5 H(pIX)1XG, Xu))

= ROCy,, vy, 1x.%.%,;(P)
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Estimation of Sy
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Key Points

Transitioning: Pepe (2000) — Alonzo & Pepe (2002)

Pepe (2000):
o If U,_, = l(ylj > Yo,'), then
E[UU|G0(Y0,’X,) = p,X;,)(l',Xli] = ROCYO,-,YU|X,-,XJ-,X1,-(p)

Alonzo & Pepe (2002):
@ Estimate Sp on a user-determined grid, Gy

o If Uy = 1(Y1; > 551 (p|X;)), then
E[Up)| Xj, X1j] = ROCy,, vi1x,%;,%;(P)
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Estimation of S
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Key Points

If it looks like a GLM and "links" like a GLM. . .

Focusing attention on “binormal" setup (GLM with probit link):

ROCy, vy 1x.x (P) = ®(a0 + a1®~(p) + BoX + B1X1).

N

= (&, B)7 solve the following estimating equations:

Z prjq) ij ((ZPJ)CD( pj)) (UPj - q)(ij)) =0,

pEGy j=1
where X, = (1,97Y(p), X;, X1;) 7, and z,; = X 6.
We refer to this approach as ROC-GLM.



Key Points

Compare with Likelihood Approach

Assume:
o YoilXi " N (70 + (oXi, 02) =d Pro
o Yi;|(Xj, X)) " N +71 + (Co + €)X + (2 Xuj, 0%) =4 Pry
Thenr deﬁning T = (707 Y1, CO? Cla go, Ul):
no n
e 7T =arg maxz log pry( Yoi; Xoi) + Z log pr, (Y1); Xj, X1))
T i=1 j=1

] ROCy07y1|X7X1(S) = (’}/1 + @(D_l(P) + g)( + C2)(1) .
o1 01 01 01



Simulations

Simulation Studies

@ Reminder: Trade-off between computational and statistical
efficiency based on Gy

@ Reminder: Efficiency loss of ROC-GLM when likelihood is
correctly specified

@ ROC-GLM robustness to misspecified ROC curve



Simulations

Simulation Setup

Consider case of no covariates, for simplicity.
° Yy iid (0,1); Yy, iid (ao/a1,1/a?)
@ ...this is done so that ROCy, y,(p) is binormal with
parameters ag and ag
e Scenario 1: a = (0.75,0.90)
e Scenario 2: a = (1.50,0.85)
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Simulation Setup
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Simulations

Efficiency with Choice of G,

Gy divides the interval [0, 1] into ¢ equally spaced subdivisions:

Goal: determine the effect of £ on statistical and computational
efficiency.



Simulations

Recall: Statistical Efficiency Loss

Consider ng = n; = 200:
a = (0.75,0.90) a = (1.50,0.85)
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Simulations

Recall: Computational Efficiency Gain

a = (0.75,0.90) a = (1.50,0.85)
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Simulations

Simulation Setup

Consider case of no covariates, for simplicity.

o Yo S N(0,1); Yi; C N (ag/a1,1/a?)

@ ...this is done so that ROCy; v, (p) is binormal with
parameters g and 3
e Scenario 1: a = (0.75,0.90)
e Scenario 2: a = (1.50,0.85)
@ nNg = np —= 50
e Gy is maximal (¢ = 50)



Simulations

Comparison to MLE

Scenario 1: a = (0.75,0.90)
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Simulations

Comparison to MLE

Scenario 2: a = (1.50,0.85)
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Simulations

Model Misspecification

Suppose Yo; 19 Exponential(2) and Yj; id Exponential(4), so that

4
ROCy,,v,(p) = exp (2 Iog(p)) = p>

Some Options: Correct? Hope works?
Exponential MLE v v
ROC-GLM (log-link) v v
Normal MLE X X
ROC-GLM (probit-link) X v




Simulations

Model Misspecification
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CPAO Example

CPAO Data

e Childhood Predictors of Adult Obesity Study (CPAO)
@ 823 adults (133 obese and 690 non-obese)
@ Determine whether childhood BMI can predict adult obesity

e Adjusted model: include age, sex (for everyone), and adult
BMI (for the obese participants) in the model



CPAO Example

CPAO Example

ROC-GLM Models for CPAO Data
Method Estimate Bootstrap S.E. p-value

Adjusted:
Intercept 0.150 0.376 0.69
Age 0.0669 0.0276 0.012
Gender -0.284 0.238 0.23
Adult BMI 0.236 0.136 0.083
o~1(p) 0.923 0.0926 < 0.001

Table 4. Results of ROC regression analysis applied to the CPAO study

Variable Coefficient  Standard error p-value
Intercept 0.210 0.225 0.348
AGE (years) 0.080 0.014 <0.0001
GENDER (female = 0, male =1)  —0.313 0.185 0.090
aBMIz (z-score) 0.285 0.084 0.001

0] 1.140 0.069 <0.0001
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CPAO Example
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The End

In Summary

o Computational efficiency gains with fewer cut-points v/

@ ...at a cost of "statistical" efficiency X/v/

@ Loss might be acceptable when working with an absolutely
massive data set X /v

@ Robustness to model misspecification vv'vV'vV'v

@ We want a more compelling reason to adopt this method over

full-size G,

o Consider that part of the critique
o See "extra" slides on bootstrap estimation



The End

Extra Slides

@ CPAO example interpretation

@ Bootstrap standard errors



The End

CPAO Example Interpretation

ROC-GLM Models for CPAO Data
Method Estimate Bootstrap S.E. p-value
Age  0.0669 0.0276 0.012

“Two obese adults of the same gender and adult BMI, but differing
in age by one year, differ in estimated probability of having a BMI
exceed the healthy quantiles of the same respective covariates by
0.0669 on the probit scale (with the older participant having the
higher probability)"




Bootstrap

Variance Estimation

Scenario: 1
o= (0.75, 0.90)
np = n = (50, 50)

2
(1.50, 0.85)
(50, 50)

Simulated Var[&]
¢=150 (0.047, 0.026)
¢=10 (0.061, 0.043)
Var[a]
¢=50 (0.030, 0.015)
¢=10 (0.065, 0.049)

(0.094, 0.045)
(0.11, 0.072)

(0.069, 0.027)
(0.13, 0.077)

The End
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