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Goals

Overarching Goals:
Identify diagnostic tests with ability to discriminate between
states of health
Identify factors which influence diagnostic accuracy

Methodological Goal:
Devise a method for ROC regression which:

Provides valid estimates
Is simple to implement
Is computationally efficient
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Notation

Y0 and Y1: test values for healthy and diseased participants
X : covariate(s) for all subjects
X1 : variables specific to diseased group
S0 and S1: survivor functions for Y0 and Y1, respectively:
. . . meaning, S0(c) = P(Y0 ≥ c), and S1(c) = P(Y1 ≥ c)

Key Observation

ROCY0,Y1|X ,X1(p) = S1
(
S−1

0 (p|X )
∣∣∣X ,X1

)
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ROC
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A Suitable Starting Point

Inherently parametric methods
Parametrically model the test results
And determine the induced ROC curve

Model ROC curve directly rather than presume a distribution for
the data

Generalized linear model framework (2000)
Much easier to program, somewhat intuitive
Computationally less efficient than desirable
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Estimation (Pepe, 2000)

We observe Y - and X -values on n0 healthy controls and n1
diseased participants . . .

Key Observation
If Uij = 1(Y1j ≥ Y0i ), then . . .

E[Uij |S0(Y0i |Xi ) = p,Xi ,Xj ,X1j ]

= P(Y1j ≥ Y0i |S0(Y0i |Xi ) = p,Xi ,Xj ,X1j)
= P(Y1j ≥ S−1

0 (p|Xi )|Xj ,X1j)
= S1(S−1

0 (p|Xi )|Xj ,X1j)
= ROCY0i ,Y1j |Xi ,Xj ,X1j (p)
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Estimation of S0
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Estimation of S0
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Transitioning: Pepe (2000) −→ Alonzo & Pepe (2002)

Pepe (2000):
If Uij = 1(Y1j ≥ Y0i ), then
E[Uij |G0(Y0i |Xi ) = p,Xi ,Xj ,X1i ] = ROCY0i ,Y1j |Xi ,Xj ,X1j (p)

Alonzo & Pepe (2002):
Estimate S0 on a user-determined grid, G`
If Upj = 1(Y1j ≥ Ŝ−1

0 (p|Xi )), then
E[Upj |Xj ,X1j ] = ROCY0i ,Y1j |Xi ,Xj ,X1j (p)
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Estimation of S0
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Estimation of S0
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If it looks like a GLM and "links" like a GLM. . .

Focusing attention on “binormal" setup (GLM with probit link):

ROCY0,Y1|X ,X1(p) = Φ(α0 + α1Φ−1(p) + β0X + β1X1).

θ̂ = (α̂, β̂)T solve the following estimating equations:

∑
p∈G`

n1∑
j=1

Xpj
φ(zpj)

Φ(zpj) (1− Φ(zpj)) (Upj − Φ(zpj)) = 0,

where Xpj = (1,Φ−1(p),Xj ,X1j)T , and zpj = XT
pjθ.

We refer to this approach as ROC-GLM.



Motivation Key Points Simulations CPAO Example The End

Compare with Likelihood Approach

Assume:
Y0i |Xi

iid∼ N (γ0 + ζ0Xi , σ
2
0) =d Pτ 0

Y1j |(Xj ,X1j)
iid∼ N (γ0 + γ1 + (ζ0 + ζ1)Xj + ζ2X1j , σ

2
1) =d Pτ 1

Then, defining τ = (γ0, γ1, ζ0, ζ1, σ0, σ1):

τ̂ = arg max
τ

n0∑
i=1

log pτ 0(Y0i ; X0i ) +
n1∑

j=1
log pτ 1(Y1j ; Xj ,X1j)

ROCY0,Y1|X ,X1(s) = Φ
(
γ1
σ1

+ σ0
σ1

Φ−1(p) + ζ1
σ1

X + ζ2
σ1

X1

)
.
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Simulation Studies

Reminder: Trade-off between computational and statistical
efficiency based on G`
Reminder: Efficiency loss of ROC-GLM when likelihood is
correctly specified
ROC-GLM robustness to misspecified ROC curve
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Simulation Setup

Consider case of no covariates, for simplicity.

Y0i
iid∼ N (0, 1); Y1j

iid∼ N
(
α0/α1, 1/α2

1
)

. . . this is done so that ROCY0,Y1(p) is binormal with
parameters α0 and α1

Scenario 1: α = (0.75, 0.90)
Scenario 2: α = (1.50, 0.85)



Motivation Key Points Simulations CPAO Example The End

Simulation Setup
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Efficiency with Choice of G`

G` divides the interval [0, 1] into ` equally spaced subdivisions:

G` =
{ i
`

: i = 1, . . . , `
}

Goal: determine the effect of ` on statistical and computational
efficiency.
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Recall: Statistical Efficiency Loss

Consider n0 = n1 = 200:
α = (0.75, 0.90) α = (1.50, 0.85)
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Recall: Computational Efficiency Gain

α = (0.75, 0.90) α = (1.50, 0.85)
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Simulation Setup

Consider case of no covariates, for simplicity.

Y0i
iid∼ N (0, 1); Y1j

iid∼ N
(
α0/α1, 1/α2

1
)

. . . this is done so that ROCY0,Y1(p) is binormal with
parameters α0 and α1

Scenario 1: α = (0.75, 0.90)
Scenario 2: α = (1.50, 0.85)

n0 = n1 = 50
G` is maximal (` = 50)
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Comparison to MLE

Scenario 1: α = (0.75, 0.90)
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Comparison to MLE

Scenario 2: α = (1.50, 0.85)
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Model Misspecification

Suppose Y0i
iid∼ Exponential(2) and Y1j

iid∼ Exponential(4), so that

ROCY0,Y1(p) = exp
(4
2 log(p)

)
= p2.

Some Options: Correct? Hope works?
Exponential MLE 3 3

ROC-GLM (log-link) 3 3

Normal MLE 7 7

ROC-GLM (probit-link) 7 3
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Model Misspecification
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CPAO Data

Childhood Predictors of Adult Obesity Study (CPAO)
823 adults (133 obese and 690 non-obese)
Determine whether childhood BMI can predict adult obesity
Adjusted model: include age, sex (for everyone), and adult
BMI (for the obese participants) in the model
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CPAO Example

ROC-GLM Models for CPAO Data
Method Estimate Bootstrap S.E. p-value

Adjusted:
Intercept 0.150 0.376 0.69

Age 0.0669 0.0276 0.012
Gender -0.284 0.238 0.23

Adult BMI 0.236 0.136 0.083
Φ−1(p) 0.923 0.0926 < 0.001
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CPAO Example
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In Summary

Computational efficiency gains with fewer cut-points 3

. . . at a cost of "statistical" efficiency 7/3

Loss might be acceptable when working with an absolutely
massive data set 7/3

Robustness to model misspecification 33333

We want a more compelling reason to adopt this method over
full-size G`

Consider that part of the critique
See "extra" slides on bootstrap estimation
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Extra Slides

CPAO example interpretation
Bootstrap standard errors
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CPAO Example Interpretation

ROC-GLM Models for CPAO Data
Method Estimate Bootstrap S.E. p-value

Age 0.0669 0.0276 0.012

“Two obese adults of the same gender and adult BMI, but differing
in age by one year, differ in estimated probability of having a BMI
exceed the healthy quantiles of the same respective covariates by
0.0669 on the probit scale (with the older participant having the
higher probability)"
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Bootstrap

Variance Estimation
Scenario: 1 2

α = (0.75, 0.90) (1.50, 0.85)
n0 = n1 = (50, 50) (50, 50)
Simulated Var[α̂]

` = 50 (0.047, 0.026) (0.094, 0.045)
` = 10 (0.061, 0.043) (0.11, 0.072)

V̂ar[α̂]
` = 50 (0.030, 0.015) (0.069, 0.027)
` = 10 (0.065, 0.049) (0.13, 0.077)
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