
An Evaluation of Inferential Procedures for Adaptive Clinical Trial Designs with Pre-specified Rules for Modifying the Sample Size Gregory P. Levin, Sarah C. Emerson, & Scott S. Emerson

Cesar Torres

April 22, 2014

Why choose this paper?

Summer project, completed under the guidance of Lurdes Inoue Surprisingly, did not win any of the 'Best Poster' awards

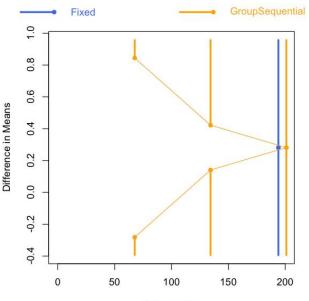
What are adaptive clinical trials?

Adaptive clinical trials modify trial plans based on interim results.

Compared to clinical trials with fixed sample designs (and the same operating characteristics), adaptive trials

- Typically have higher maximum sample size
- But achieve lower average sample size
 - Save time
 - Save money
 - Save participants

Ok, fine. But what are the specifics of the setup?


Three designs mentioned

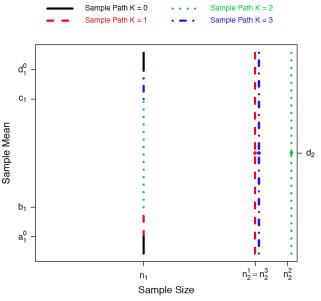
- Fixed sample
- Group sequential
- Group sequential with one "adaptation" (will elaborate on this in a bit)
- Parameter of interest: $\theta = \mu_{\text{treatment}} \mu_{\text{placebo}}$
- ▶ Interest in testing, for example, $H_0: \theta \leq 0$ vs $H_1: \theta > 0$

...group...sequential?

- J interim analyses
- Statistic T_j based on the data observed up until jth analysis (interim or final)
- For some boundaries $a_j \leq d_j$,
 - If j ≤ J, stop the trial and reject H₀ if T_j ≥ d_j, stop the trial and fail to reject H₀ if T_j ≤ a_j, and continue on with the trial otherwise
 - If j = J + 1 (at the final analysis), stop the trial and reject H₀ if T_j ≥ d_j, stop the trial and fail to reject H₀ otherwise

Whoah, buddy! Where's the picture?

Sample Size


How about that promised elaboration?

Group Sequential Design with Adaptation

- Similar to group sequential design with no adaptation
- Adaptation occurs at interim analysis time j = h
 - ▶ For $j \in \{1, 2, ..., h 1\}$, essentially the same as with no adaptation

• Based on T_h , determine future analysis times and boundaries

Picture, please!

totally not lifted from the paper ...

What about inference?

Recall that $H_0: \theta \leq 0$, and $H_1: \theta > 0$

(1-lpha) imes 100% Confidence intervals for heta

- \blacktriangleright Invert hypothesis test with type I error probability α
- Define acceptance region of "non-extreme" results for the test statistic
 - Fixed sample design
 - ▶ Neyman-Pearson lemma, Karlin-Rubin theorem applicable
 - Group sequential design, with or without adaptation
 - Likelihood ratio not monotone, so Neyman-Pearson lemma, Karlin-Rubin theorem not applicable
 - Need some ordering of sample space to determine "extreme" values

What orderings?

Three orderings focused on in paper

- Sample mean
- ▶ Signed LR: if \forall fixed θ^* ,

$$sign(t^{(1)} - \theta^*) \frac{P(\text{outcome } 1|\theta = t^{(1)})}{P(\text{outcome } 1|\theta = \theta^*)} > sign(t^{(2)} - \theta^*) \frac{P(\text{outcome } 2|\theta = t^{(2)})}{P(\text{outcome } 2|\theta = \theta^*)},$$

then outcome 1 ordered higher than outcome 2, with $t^{(i)}$ the sample mean from outcome i

Conditional Error Ordering: ???

What about the point estimates and p-values?

Three point estimates considered

- Sample mean $\hat{\theta}$ (MLE)
- Bias adjusted mean $\check{\theta}$
 - Whitehead (1986)
- Median-unbiased estimate
 - Given the observed outcome, and an ordering, $\tilde{\theta}$ satisfies $P(\text{observed} \succ \text{all outcomes} | \theta = \tilde{\theta}) = \frac{1}{2}$

Given an ordering, upper one-sided p-value calculated as p-value = $P(\text{observed} \succ \text{all outcomes} | \theta = 0)$

So...what do the authors do in the paper?

Evaluate by simulation the behavior of group sequential designs with one sample size adaptation, under different scenarios In particular, looking at

- Coverage probabilities and average length of confidence intervals
- Performance of point estimates and p-values

Varying parameters:

- Type of stopping boundaries
- Power, at some clinically meaningful effect size $\theta = \Delta$
- Maximum number of interim analyses J
- Timing of the adaptation
- Maximum allowable sample size
- Rule for determining sample size
- True θ

What's next?

- do some serious background reading
- run simulations for days

