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Overview

I Review

I Distribution of sampling density

I Simulation results

I Concerns (Criticisms)

I More simulation results

2



Review: Motivating Example

Suppose researchers want to cure [insert type of cancer here],
because said cancer is bad.

I Two-arm clinical trial
I Can observe Xplaci ’s and Xtreati ’s

I Xplaci
iid∼ N

(
µplac , σ

2
)

I Xtreati
iid∼ N

(
µtreat , σ

2
)

I σ2 > 0 known

I Defining θ := µtreat − µplac , interested in testing
H0 : θ ≤ 0 vs. H1 : θ > 0

I Issue of concern: lots of treatments to evaluate
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Review: Clinical Trial Designs

I “Well-understood” designs
I Fixed design
I Group sequential design

I “Less well-understood” designs
I Adaptive design

I The focus of this paper
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Review: Fixed Design
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Review: Fixed Design
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Review: Fixed Design
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Review: Group Sequential Design
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Review: Group Sequential Design
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Review: Group Sequential Design
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Review: Group Sequential Design
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Review: Group Sequential Design
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Review: Group Sequential Design
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Review: Adaptive Design
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Review: Adaptive Design
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Review: Adaptive Design
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Review: Adaptive Design
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Review: Inference when using GS or Adaptive Designs

I Neyman-Pearson lemma, Karlin-Rubin theorem not applicable
I Likelihood ratio not monotone non-decreasing when using

group-sequential-like designs

I Need some way (some ordering) to determine what are
“extreme” observations under the null hypothesis
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Review: Considered Orderings

I Sample mean
I Signed LR: If ∀ fixed θ∗,

sign
(
θ̂(1) − θ∗

) f
(
outcome 1|θ = θ̂(1)

)
f (outcome 1|θ = θ∗)

> sign
(
θ̂(2) − θ∗

) f
(
outcome 2|θ = θ̂(2)

)
f (outcome 2|θ = θ∗)

,

then outcome 1 ordered higher than outcome 2, with θ̂(i) the
sample mean from outcome i

I Conditional Error Ordering: Outcomes ordered according to
the stage-wise p-value of “backward image”
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Review: Point Estimates

Three point estimates considered

I Sample mean (MLE) θ̂

I Bias adjusted mean (BAM) η̂: the value θ for which θ̂ is the
mean

I Median-unbiased estimate (MUE) ζ̂: the value θ for which θ̂
is the median
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Distribution of Sampling Density
Law of Total Probability:

Fθ̂|θ(x) = Pθ

(
θ̂ ≤ x

)
=
∑n

i=0
Pθ

(
θ̂ ≤ x |Ci

)
Pθ(Ci )

=
∑n

i=0
Fθ̂|θ,Ci (x)Pθ(Ci ).

Taking derivatives:

fθ̂|θ(x) =
d

dx
Fθ̂|θ(x)

=
d

dx

∑n

i=0
Fθ̂|θ,Ci (x)Pθ(Ci )

=
∑n

i=0

d

dx
Fθ̂|θ,Ci (x)Pθ(Ci )

=
∑n

i=0
fθ̂|θ,Ci (x)Pθ(Ci ).
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Distribution of Sampling Density

C0: the stopping region.

Fθ̂|θ,C0(x) = Pθ

(
θ̂ ≤ x |C0

)
= Pθ

(
θ̂ ≤ x |θ̂1 /∈ (a1, d1)

)
=

Pθ

(
θ̂ ≤ x , θ̂1 /∈ (a1, d1)

)
Pθ

(
θ̂1 /∈ (a1, d1)

)
=

Fθ̂1|θ(x)× 1{θ̂1 /∈(a1,d1)}
Pθ

(
θ̂1 /∈ (a1, d1)

)
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Review: Adaptive Design
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Distribution of Sampling Density

Taking derivatives once more:

fθ̂|θ,C0(x) =
d

dx
Fθ̂|θ,C0(x)

=
fθ̂1|θ(x)× 1{θ̂1 /∈(a1,d1)}
Pθ

(
θ̂1 /∈ (a1, d1)

) .
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Distribution of Sampling Density

Ci , i ≥ 1: a continuation region.

I m = sample size at interim analysis

I N = m + n = sample size at final analysis

I θ̂ = m
N × θ̂1 + n

N × θ̂2
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Distribution of Sampling Density

Ci , i ≥ 1: a continuation region.

Fθ̂|θ̂1=x(z) = Pθ

(
θ̂ ≤ z |θ̂1 = x

)
= Pθ

(m
N
× θ̂1 +

n

N
× θ̂2 ≤ z |θ̂1 = x

)
= (some algebra)

= Fθ̂2|θ

(
N

n

(
z − mx

N

))
Derivative:

fθ̂|θ̂1=x(z) = fθ̂2|θ

(
N

n

(
z − mx

N

))N

n
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Distribution of Sampling Density

Ci , i ≥ 1: a continuation region. Convolution:

fθ̂|Ci (z) =

∫ ∞
−∞

fθ̂|θ̂1(z)fθ̂1(x)dx

I R can compute this numerically.
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Simulation Results

Settings:

I Recalling that θ := µtreat − µplac , interested in testing
H0 : θ ≤ 0 vs. H1 : θ > 0

I Assumed: σ2 = 0.5

I Desired: Level α = 0.025 at θ = 0, power of 0.9 at θ = 1

I Continuation region from original GS design divided into 10
equally sized continuation regions

I Adaptive rule: Final sample size
N∗(t) = 2.02N − 1.627 (t − 1.96), with t the midpoint of the
new continuation region.

I Standard boundaries derived similarly to those in GS design
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Simulation Results

Procedure:
I Through grid search, get boundaries and sample sizes needed

to achieve desired size and power
I Computationally demanding

I Run clinical trial (or simulate data)
I Computationally easy

I Draw inference from observed data
I Computationally intense
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Simulation Results
Scenario 1: Distribution assumptions hold
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Simulation Results
Scenario 1: Distribution assumptions hold
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Concern

Distribution Assumptions

I Known variance

I Normality
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Simulation Results
Scenario 2: Normality holds, but true σ2 = 1
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Simulation Results
Scenario 2: Normality holds, but true σ2 = 1
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Simulation Results
Scenario 3: Data exponentially distributed, appropriately scaled
and shifted so that σ2 = 0.5 and θ ∈ (0, 2)
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Simulation Results
Scenario 3: Data exponentially distributed, appropriately scaled
and shifted so that σ2 = 0.5
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Additional Concern

Knowledge of the final sample size is potentially unblinding.
I Same could be said of group sequential design, but group

sequential design is widely accepted
I Not a great answer, but it’s something

I No clear way to quantify effects of such an unblinding

38



Summary

I Whether or not adaptive designs are a good idea, they are
implemented to find cures for things such as [insert type of
cancer here], so their properties need to be understood

I Under sample mean ordering and either type of boundary
design, all 3 estimators do reasonably well, and confidence
intervals do okay when θ is close to 0

I Inference not necessarily robust to violations of distribution
assumptions
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Questions?
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