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Motivation - Scienti�c Objectives

Goal: Describe a disease process in terms of its transitions through

discrete states.

Progressive disease: subjects traverse disease states in one
direction.

Stages of HIV infection

Non-progressive disease: subjects may visit some or all states
repeatedly, just once, or not at all.

Delirium



Motivation - Methodological Objectives

Goal:Obtain estimates and covariance matrices for transition

intensity parameters in non-homogeneous Markov process models.

Panel Data: Subjects are observed at a sequence of discrete times,

observations consist of the states occupied by the subjects at those

times.

The exact transition times are not observed.

The complete sequence of states visited by a subject may not

be known.

Key Assumption: The process is non-homogeneous only through

a time-varying multiplicative change in the state transition

intensities. (Spoiler alert: this will allow us to model the process on

an operational time scale on which we get homogeneity "for free".)



A Crash Course in Stochastic Processes

Notation, De�nitions, and Equations

X (t) = state occupied at time t, X (t) ∈ S = {1, . . . ,m}
pij(s, t) = Pr{X (t) = j |X (s) = i}
P(t, t + s) = [pij(t, t + s)] for s, t ≥ 0

qij(t) = lim
s→0

pij (t,t+s)
s , qii = −

∑
j 6=i

qij(t)

Q(t) = [qi j(t)] for t ≥ 0



A Crash Course in Stochastic Processes

de�nition: The process is said to be Markov if the future

state of the process depends only on its current state.

Formally,∀s, t ≥ 0 and ∀i , j ∈ S, the process satis�es

P{X (t+s) = j |X (t) = i ,X (u) = x(u), 0 ≤ u < s} = pij(t, t+s)

de�nition: The process is said to be homogeneous if the

transition probabilities do not depend on the chronological

time t. That is,

pij(t, t + s) = pij(s), and qij(t) = qij



A Crash Course in Stochastic Processes

We would suspect that having a process be both homogeneous and

Markov would be a good thing.

More data available to estimate fewer parameters

(Homogeneity)

Simpler form for the likelihood (Markov)



A Crash Course in Stochastic Processes

If the process is a homogeneous Markov process, it satis�es the

Chapman-Kolmogorov equation, which describes the transition

probabilities in terms of the possible paths the process can take:

pij(s) =
∑
k∈S

pik(u)pk j(s − u), 0 < u < s

i.e. P(s) = P(u)P(s − u)

From this, we get the forward and backward equations

d

ds
P(s) = QP(s) = P(S)Q

so that: P(s) = exp(Qs) =
∞∑
n=0

(Qs)n

n!



A Crash Course in Stochastic Processes

Therefore for a homogeneous Markov process, we can equivalently

characterize the process by its transition intensity matrix and by its

matrix of transition probabilities.



Homogeneity is good. Yay homogeneity!



Key Proposition: Time Transformation

Let u denote the original time scale of the observations. If

there exists an invertible transformation of the time scale

such that the process is homogeneous on t=h(u), with
transition intensity matrix Q0, then

P(u1, u2) = P(h(u1), h(u2)) = P(t2 − t1)

= exp[Q0(t2 − t1)] = exp[Q0(h(u2)− h(u1))]

N.B. h(u) is a time scale, so we require it to be non-negative and

have non-negative �rst derivative.



Likelihood Function

The likelihood for X = (X (u1), . . . ,X (un))
T is:

L(Q0) = P(X (u1) = x1)
n∏

i=2

pxi−1,xi (ui−1, ui )

Since the transformed process is homogeneous, we have

L(Q0, θ) = P(X (u1) = x1)
n∏

i=2

pxi−1,xi (h(ui ; θ)− h(ui−1; θ))

= P(X (u1) = x1)
n∏

i=2

[
eQ0(h(ui ;θ)−h(ui−1;θ))

]
xi−1xi



Seminal Paper: Kalb�eish & Lawless (1985)

Derived procedures for obtaining MLEs and covariance

matrices for transition intensity parameters in modeling panel

data with continuous time homogeneous Markov processes.

Used Fisher scoring algorithm based on the score function and

its �rst derivatives.



Seminal Paper: Kalb�eish & Lawless (1985)

Assume independence across subjects. Letting ψ be the vector
of functionally independent elements of Q0 and θ, we have
that the MLEs are the solutions to ∂

∂ψ logLm(ψ) = 0 and

ψ̂ ∼ N (0, I−1

m (ψ0)), where Im = E

[(
∂

∂ψ
logLm(ψ)

)(
∂

∂ψ
logLm(ψ)

)T
]

Given initial estimates ψ(0), the (k + 1)st step for the MLEs is

ψ̂(k+1) = ψ̂(k) + Îm(ψ̂(k))−1
∂

∂ψ
logLm(ψ)



Next Steps

More pictures of Cesar.

Simulation results under exponential and kernel time

transformation functions, and comparisons with functions in

the msm package in R.

Model results based on real-world data (dataset yet to be

selected).

More pictures of Cesar!


