Modelling Non-homogeneous Markov Processes via Time Transformation

Jon Fintzi fintzij@uw.edu

### Motivation - Scientific Objectives

**Goal:** Describe a disease process in terms of its transitions through discrete states.

- □ Progressive disease: subjects traverse disease states in one direction.
  - Stages of HIV infection



- □ Non-progressive disease: subjects may visit some or all states repeatedly, just once, or not at all.
  - Delirium



### Motivation - Methodological Objectives

**Goal:**Obtain estimates and covariance matrices for transition intensity parameters in non-homogeneous Markov process models.

Panel Data: Subjects are observed at a sequence of discrete times, observations consist of the states occupied by the subjects at those times.

- ☐ The exact transition times are not observed.
- ☐ The complete sequence of states visited by a subject may not be known.

**Key Assumption:** The process is *non-homogeneous* only through a time-varying multiplicative change in the state transition intensities. (*Spoiler alert: this will allow us to model the process on an operational time scale on which we get homogeneity "for free"*.)

#### Notation, Definitions, and Equations

- $\square$   $X(t) = \text{state occupied at time } t, X(t) \in \mathcal{S} = \{1, \dots, m\}$
- $p_{ij}(s,t) = \Pr\{X(t) = j | X(s) = i\}$   $P(t,t+s) = [p_{ij}(t,t+s)] \text{ for } s,t \ge 0$
- $\square \ q_{ij}(t) = \lim_{s \to 0} \frac{p_{ij}(t,t+s)}{s}, \ q_{ii} = -\sum_{j \neq i} q_{ij}(t)$

$$\mathbf{Q}(t) = [q_i j(t)] \text{ for } t \geq 0$$

□ **definition**: The process is said to be *Markov* if the future state of the process depends only on its current state. Formally,  $\forall s, t \geq 0$  and  $\forall i, j \in \mathcal{S}$ , the process satisfies

$$P\{X(t+s) = j | X(t) = i, X(u) = x(u), 0 \le u < s\} = p_{ij}(t, t+s)$$

definition: The process is said to be homogeneous if the transition probabilities do not depend on the chronological time t. That is,

$$p_{ij}(t,t+s)=p_{ij}(s)$$
, and  $q_{ij}(t)=q_{ij}$ 

We would suspect that having a process be both homogeneous and Markov would be a good thing.

- More data available to estimate fewer parameters (Homogeneity)
- □ Simpler form for the likelihood (Markov)

If the process is a homogeneous Markov process, it satisfies the *Chapman-Kolmogorov* equation, which describes the transition probabilities in terms of the possible paths the process can take:

$$p_{ij}(s) = \sum_{k \in \mathcal{S}} p_{ik}(u) p_k j(s-u), \ 0 < u < s$$
 i.e.  $\mathbf{P}(s) = \mathbf{P}(u) \mathbf{P}(s-u)$ 

From this, we get the forward and backward equations

$$\frac{d}{ds}P(s) = QP(s) = P(S)Q$$
so that:  $P(s) = exp(Qs) = \sum_{n=0}^{\infty} \frac{(Qs)^n}{n!}$ 

Therefore for a homogeneous Markov process, we can equivalently characterize the process by its transition intensity matrix and by its matrix of transition probabilities.

# Homogeneity is good. Yay homogeneity!



### Key Proposition: Time Transformation

Let u denote the original time scale of the observations. If there exists an invertible transformation of the time scale such that the process is homogeneous on t=h(u), with transition intensity matrix  $Q_0$ , then

$$P(u_1, u_2) = P(h(u_1), h(u_2)) = P(t_2 - t_1)$$
  
=  $exp[Q_0(t_2 - t_1)] = exp[Q_0(h(u_2) - h(u_1))]$ 

N.B. h(u) is a time scale, so we require it to be non-negative and have non-negative first derivative.

#### Likelihood Function

The likelihood for  $\mathbf{X} = (X(u_1), \dots, X(u_n))^T$  is:

$$L(Q_0) = P(X(u_1) = x_1) \prod_{i=2}^{n} p_{x_{i-1},x_i}(u_{i-1},u_i)$$

Since the transformed process is homogeneous, we have

$$L(Q_0, \theta) = P(X(u_1) = x_1) \prod_{i=2}^{n} p_{x_{i-1}, x_i}(h(u_i; \theta) - h(u_{i-1}; \theta))$$

$$= P(X(u_1) = x_1) \prod_{i=2}^{n} \left[ e^{Q_0(h(u_i; \theta) - h(u_{i-1}; \theta))} \right]_{x_{i-1} x_i}$$

## Seminal Paper: Kalbfleish & Lawless (1985)

- Derived procedures for obtaining MLEs and covariance matrices for transition intensity parameters in modeling panel data with continuous time homogeneous Markov processes.
- □ Used Fisher scoring algorithm based on the score function and its first derivatives.

# Seminal Paper: Kalbfleish & Lawless (1985)

 $\square$  Assume independence across subjects. Letting  $\psi$  be the vector of functionally independent elements of  $Q_0$  and  $\theta$ , we have that the MLEs are the solutions to  $\frac{\partial}{\partial \psi} log L_m(\psi) = 0$  and

$$\hat{\psi} \sim \mathcal{N}(0, \mathcal{I}_m^{-1}(\psi_0)), \text{ where } \mathcal{I}_m = E\left[\left(\frac{\partial}{\partial \psi} log \mathcal{L}_m(\psi)\right) \left(\frac{\partial}{\partial \psi} log \mathcal{L}_m(\psi)\right)^T\right]$$

 $\square$  Given initial estimates  $\psi^{(0)}$ , the  $(k+1)^{st}$  step for the MLEs is

$$\hat{\psi}^{(k+1)} = \hat{\psi}^{(k)} + \hat{\mathcal{I}}_{m}(\hat{\psi}^{(k)})^{-1} \frac{\partial}{\partial \psi} log L_{m}(\psi)$$

### Next Steps

- More pictures of Cesar.
- ☐ Simulation results under exponential and kernel time transformation functions, and comparisons with functions in the *msm* package in R.
- Model results based on real-world data (dataset yet to be selected).
- More pictures of Cesar!