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Motivation - Scienti�c Objectives

Scienti�c Goal: Describe a disease process in terms of its
transitions through discrete states.

Progressive disease: subjects traverse disease states in one
direction.

Stages of HIV infection

Non-progressive disease: subjects may visit some or all states
repeatedly, just once, or not at all.

Delirium



Motivation - Methodological Objectives

Goal:Obtain estimates and covariance matrices for transition
intensity parameters in non-homogeneous Markov process models.
Problem #1 - Panel Data: Subjects are observed at a sequence
of discrete times, observations consist of the states occupied by the
subjects at those times.

The exact transition times are not observed.

The complete sequence of states visited by a subject may not
be known.



Motivation - Methodological Objectives



Motivation - Methodological Objectives

Problem #1 - Panel Data: Solution by Kalb�eisch & Lawless

Estimation of transition parameters for homogeneous Markov
processes via maximum likelihood.

A process is Markov if the future state of the process depends
only on its current state. i.e.

P (X (t + s) = j|X (t) = i, X (u) = x(u), 0 ≤ u < s) = P (X (t + s) = j|X (t) = i) = pij (t, t+s)

A process is homogeneous if the transition probabilities
do not depend on the chronological time t. i.e.

pij(t, t + s) = pij(s)

Fisher scoring algorithm based on expectations of �rst order
derivatives of the log-likelihood provides parameter and
variance estimates.



Motivation - Methodological Objectives

Problem #2 -Non-homogeneity in the Markov Process

If the process is non-homogeneous, pij(t, t + s) 6= pij(s), so we
must estimate a new transition probability matrix for every t.

Contribution of this paper: If all of the non-homogeneity in
the process is purely due to a time-varying multiplicative
change in the transition intensities, we may use the results by
Kalb�eisch and Lawless with minor adjustments.



Key Proposition: Time Transformation

Let u denote the original time scale of the observations. If

there exists an invertible transformation of the time scale

such that the process is homogeneous on t=h(u), with
transition intensity matrix Q0, then

P(u1, u2) = P(h(u1), h(u2)) = P(t2 − t1)

= exp[Q0(t2 − t1)] = exp[Q0(h(u2)− h(u1))]



Key Proposition: Time Transformation

Kalb�eisch and Lawless suggested that nonhomogeneity arising
from a transformation of the time scale could be accounted for
using exp(Q0

∫ u2
u1

g(s)ds) An advantage of the method in my
paper is that it does not require that the time transformation
be integrable.

t = h(u) is a time scale, so we require h(u) ≥ 0 and ∂h(u)
∂u ≥ 0.

Examples of time transformations

Exponential: t = h(u; θ) = uθu

Nonparameteric: Knots at uk , k = 1, . . . , d

t = h(u) = uθ(u)

θ(u) =
d∑

k=1

c(u)θk

{
1

γ
K

(
u − uk

γ

)}

c(u) =

 d∑
k=1

1

γ
K

(
u − uk

γ

)−1





Maximum Likelihood Estimation

Maximum likelihood estimation for a nonhomogeneous Markov
process via time transformation proceeds exactly as in Kalb�eisch
and Lawless.
The likelihood for one subject is:

L(Q0) = P(X (u1) = x1)
n∏

i=2

pxi−1,xi (ui−1, ui )
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Maximum Likelihood Estimation

Maximum likelihood estimation for a nonhomogeneous Markov
process via time transformation proceeds exactly as in Kalb�eisch
and Lawless.
The likelihood for one subject is:

L(Q0) = P(X (u1) = x1)
n∏

i=2

pxi−1,xi (ui−1, ui )

�No absorbing states ⇒ Asymptotics kick in as one subject is
observed for increasing period of time, or as many independent
subjects are each observed for �nite period.
�Absorbing states ⇒ Asymptotics rely on increasing number of
subjects under observation and independence across subjects.



Maximum Likelihood Estimation

In our simulations and application, we have an absorbing state.
Therefore, the likelihood for the sample is:

L(Q0) =
m∏
j=1

P(X (uj ,1) = xj ,1)
n∏

i=2

pxj,i−1,xj,i (uj ,i−1, uj ,i )



Maximum Likelihood Estimation

Since the time-transformed process is homogeneous, we have

L(Q0, θ) =
m∏
j=1

P(X (uj ,1) = xj ,1)
n∏

i=2

pxj,i−1,xj,i (h(uj ,i ; θ)− h(uj ,i−1; θ))

=
m∏
j=1

P(X (uj ,1) = xj ,1)
n∏

i=2

[
eQ0(h(uj,i ;θ)−h(uj,i−1;θ))

]
xj,i−1,xj,i



Seminal Paper: Kalb�eish & Lawless (1985)

The scoring method proposed in Kalb�eisch and Lawless, and
implemented in Hubbard et al., uses the expected information
matrix. This simpli�es the algorithm by only requiring use of
the �rst-order derivatives of the likelihood.

Assume independence across subjects. Letting ψ be the vector
of functionally independent elements of Q0 and θ, we have
that the MLEs are the solutions to ∂

∂ψ logLm(ψ) = 0 and

ψ̂ ∼ N (0, I−1
m (ψ0)), where Im = E

[(
∂

∂ψ
logLm(ψ)

)(
∂

∂ψ
logLm(ψ)

)T
]

Given initial estimates ψ(0), the (k + 1)st step for the MLEs is

ψ̂(k+1) = ψ̂(k) + Îm(ψ̂(k))−1
∂

∂ψ
logLm(ψ)



Last time, we derived in (excruciating) detail expressions for
the elements of the score vector and the Fisher information
matrix.

Large sample properties of the estimates can be derived using
standard asymptotic theory (Billingsley, 1961; Albert, 1962;
Bladt and Sorensen, 2005).

Were they relevant, we could derive other quantities using
estimates of the transition intensity parameters and time
transformation parameters.

Mean sojourn times in each state and their variances
Steady state distribution (for an ergodic process)



Data Simulation Procedure - Overview

We use Gillespie's direct method to simulate data (Gillespie, 1977).

1 We recognize the o� diagonal elements of Q as intensity
parameters of independent Poisson processes from state i to
state j . Diagonal elements are the negated intensities of arrival
to any non-diagonal state.

2 We can simulate the path for homogeneous process from a
given transition intensity matrix by generating transition times,
then randomly selecting the new state conditional on a move.

3 Incorporate non-homogeneity and the panel structure of
observations is trivial once the path has been simulated.



Data Simulation Procedure - Observation Times

We simulate data that is homogeneous on a transformed time scale
as follows:

1 On the original time scale, simulate i.i.d. Unif (0.2, 1)
inter-observation times. Cumulative summation gives the raw
observation times.

2 Transform the observation times. This gives observation times
in the operational time scale on which the process is
homogeneous.

3 Simulate a path from the transition intensity matrix. Record
sequence of states and transition times.



Data Simulation Procedure - Simulating a Sample

Path

Simulating a path proceeds as follows:

1 Given state i at time t = 0, draw u ∼ Unif (0, 1). The sojourn

time in state i is given by ∆t = log(u)
qii
∼ exp(”mean” = − 1

qi i
)

2 Conditioned on exiting state i , the probability of moving to
state j is pij =

qij∑
j 6=i qij

. We then partition the interval [0, 1]

into the lengths pij for j 6= i , and draw v ∼ Unif (0, 1). The
interval into which v falls gives it's next state.

3 If the new state is an absorbing state (death), or if the
transition data is greater than the termination date of the
period of observation, the path is terminated. Otherwise, the
state is recorded under the next time in the panel observation,
we increment the time, then proceed.



Data Simulation Procedure



Simulation Setup

Transition intensity matrix Q0 =

 −0.3 0.2 0.1
0.2 −0.3 0.1
0 0 0


1,000 datasets were generated for each combination of the
following parameters:

Number of subjects: 100, 250, 500
Observations per subject: 12, 24
Exponential transformation parameter θ: 0.95, 1, 1.1

Initial values based on estimates assuming exact knowledge of
path and transition times:

q
(0)
ij = # Transitions from r to s

Total time in state r

θ̂(0) = 1

Parameters for each dataset estimated for time transformation
(TT) method and with standard homogeneous model (HM).



Simulation Results: θ = 0.95

θ = 0.95 with 24 measurements per subject was the only simulation
scenario with severe convergence issues.

m = 100: Model failed to converge for 539 of 1000 datasets.

m = 250: Failed to converge for 680 datasets.

m = 500: Failed to converge for 742 datasets.

Explanation: θ < 1 corresponds to a process whose rate of
evolution is decreasing, meaning that we will arti�cially observe
more self-transitions, particularly as the observation period becomes
longer.



Simulation Results - Bias: θ = 0.95
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Simulation Results - Bias: θ = 1.1



Simulation Results - Bias

When the data are generated from a model where the rate of
evolution is decreasing, transition intensity estimates from a
model that assumes time homogeneity will be biased
downward. i.e. the model will think the process transitions less
often than is the case.

Downward bias becomes more severe with a longer period of
observation.

When the data are generated from a model where the rate of
evolution is increasing, transition intensity estimates will be
biased upward. i.e. the model will think the process transitions
more often than is the case.

Upward bias becomes more severe with a longer period of
observation.

Bias does not change much with the number of subjects.



Simulation Results - Asymptotic Variance: θ = 0.95



Simulation Results - Asymptotic Variance: θ = 1



Simulation Results - Asymptotic Variance: θ = 1.1



Simulation Results - Asymptotic Variance

Asymptotic variance decreases as both the number of subjects
increases and as the observation period increases.

There is not a clear pattern for how properly accounting for
the changing rate of evolution of the process using a time
transformation a�ects the asymptotic variance of the
transition intensity estimates.



Simulation Results - Coverage of 95% CIs: θ = 0.95



Simulation Results - Coverage of 95% CIs: θ = 1



Simulation Results - Coverage of 95% CIs: θ = 1.1



Simulation Results - Coverage of 95% CIs

Coverage of con�dence intervals is strongly a�ected by the
bias in the estimates.

Moral: If there is non-homogeneity in the process arising from
a time varying multiplicative change in the transition
intensities, don't trust your con�dence intervals.



Simulation Results - Estimation of θ



Simulation Results - Estimation of θ

Coverage is generally quite good, even at smaller sample sizes.

Variance decreases rapidly as the length of the observation
period/number of subjects increases.

For data generating mechanisms whose rate of evolution is not
constant, there is a small amount of positive bias that
decreases as the number of subjects and the number of
observations per subject each increase.



Application - Modeling Health Status in Older Adults

Cardiovascular Health Study (CHS) - Longitudinal study of
adults aged 65 and older recruited from Medicare eligibility
rolls.

Note: 55 is young.

Interested in the progression of self-rated health.

Follow-up observations in the original data set were scheduled
annually, but actual elapsed time ranged between one month
to one year.

The data released for this project was anonymized -
information on demographic characteristics and actual
observation times were removed. Recorded times are given in
six month increments from baseline.

5850 subjects, average number of follow-up visits was 7.5,
including ascertainment of death.



Application - Modeling Health Status in Older Adults

Self-reported health reported as: "excellent", "very good",
"good", "fair", or "poor".

Further dichotomized into three states

(1) Healthy: subject reports excellent, very good, or good health
(2) Unhealthy: subject reports fair or poor health
(3) Dead

Observed transitions:

Healthy (1) Unhealthy (2) Dead (3)

Healthy (1) 90071 15578 1267
Unhealthy (2) 13103 34960 3768



Application - Modeling Health Status in Older Adults

Using the time transformation method with exponential
transformation we estimate that θ = 1.017 with estimated
standard error of 0.00061, indicating that the rate of evolution
of the process is accelerating.

Parameter estimates and standard errors:

Time Trans. Homog. (MSM)

q12 0.306 (0.0039) 0.394 (0.0084)
q13 0.007 (0.0006) 0.010 (0.0758)
q21 0.501 (0.0067) 0.684 (0.0091)
q23 0.129 (0.0027) 0.175 (0.0168)



Application - Modeling Health Status in Older Adults

Using the time transformation method, we estimate that for a
random individual, the transition probability matrix for an elapsed
time of one year from baseline is:

Healthy Unhealthy Dead

Healthy 0.780 0.199 0.022
Unhealthy 0.325 0.575 0.101

Dead 0 0 1


