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Gold Standard

I What is a Gold standard test?
I Diagnostic test that is the best available under reasonable

conditions
I The most accurate test possible without restrictions
I In medicine, the gold standard test is less accurate than the

autopsy

I Gold standard ambiguity
I ”Sometimes” the best performing test available
I ”Other times” the best test available under reasonable

conditions (Example: MRI)
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Absence of a Gold Standard

I Difficult to perform

I Expensive

I Impossible to perform on a living person

I This type of bias is called ”Imperfect Gold Standard Bias”
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Receiver Operating Characteristic (ROC)

I What is a ROC curve?
I Method of describing the accuracy of a test apart from the

decision thresholds
I Plot of a test’s true positive rate (or sensitivity) versus its false

postive rate (or 1-specificity)
I The most valuable tool for describing and comparing the

accuracies of diagnostic tests

I Comparing the ROC curves
I Best when the curve is near left upper end
I Compare using Area Under the Curve (AUC) which is overall

measure of test performance
I Near 1: Excellence
I Near 0.5: Fail
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Receiver Operating Characteristic (ROC)
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ROC curve for ordinal-scale tests

I Nonparametric ROC curve based on the discrete sensitivity
and specificity

I Continuous ROC curve of a latent variable underlying the
observable ordinal data
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Previous Works

I Only a few published papers have dealt with the estimation of
ROC curves of ordinal or continuous scale tests in the absence
of a gold standard

I Henkelman, Kay, and Bronskill (1990)
I Maximum likelihood estimation method for ROC curve of a

5-point rating scale using a multivariate normal mixture latent
model

I Limitation: Latent random variables from multiple
ordinal-scale tests are assumed to follow MVN

I Hall and Zhou (2003)
I Nonparametric estimator for the ROC curve of

continuous-scale tests under the conditional independece
assumption when the number of tests is more than two
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Previous Works

I This paper will apply the ideas of Hall and Zhou (2003)

I Focus on a nonparametric maximum likelihood (ML) method
under the conditional independence assumption
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Setup

I N patients

I K diagnostic tests

I Scored on an ordinal scale from 1 to J

I Disease status is unknown for all N patients

I T1,...,TK : responses from K tests for a particular patient
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Nonparametric ROC Curve

I Vary the threshold for a positive test

I Calculate J+1 pairs of true positive rates (TPR) and false
positive rates (FPR)
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Nonparametric ROC Curve

Specifically, for kth test

I Define a positive test as one with Tk ≥ j , j=1,...,J+1

I TPRk(j) = P(Tk ≥ j |D = 1)

I FPRk(j) = P(Tk ≥ j |D = 0)

I TPRk(1) = FPRk(1) = 1

I TPRk(J + 1) = FPRk(J + 1) = 0

A discrete ROC curve is defined as a discrete function of
(FPRk(j),TPRk(j)), j=1,...,J+1.

We obtain nonparamtric ROC curve by connecting coordinates
with linear lines.
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Nonparametric ROC Curve

Define

I φ0kj = P(Tk = j |D = 0) and φ1kj = P(Tk = j |D = 1)

I FPRk(j) =
∑J

l=j φ0kl

I TPRk(j) =
∑J

l=j φ1kl
I ROC curve and AUC: functions of φ0kj and φ1kj because

coordinates of the nonparametric ROC curve of Tk are
(FPRk(j), TPRk(j))
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Nonparametric ML method

We wish to find MLEs for these parameters and calculate MLEs for
the ROC curve and its area under each of the K tests.

Define,

yikj =

{
1 if x = response of kth test is j for the ith patient

0 if otherwise

where i=1,...,N, k=1,...,K, and j=1,...,J

Test score vector for the ith patient is

yi=(yi11, .., yi1J , .., yiK1, .., yiKJ)
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Nonparametric ML method

gd(yi) = P(yi|Di = d)

=
K∏

k=1

J∏
j=1

[φdkj ]
yikj(conditional independence of the K tests)
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Nonparametric ML method

Assume a Bernoulli distribution for D with pd = P(D = d) for
d=0,1

I Likelihood contributed by the ith patient
I P(yi) = p1g1(yi) + p0g0(yi)

I Joint log likelihood
I l(p1, φ0, φ1) =

∑N
i=1 log [p0g0(yi) + p1g1(yi)]

where p0 = 1− p1 and φd = (φd11, ..., φd1J , ..., φdK1, ..., φdKJ)

Goal: Find the ML estimates for p1, φ0, andφ1 ⇒ EM algorithm
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EM Algorithm

I Complete data: (y, D)

I θ=(p1, φ0, φ1)

I lc(θ) =
∑N

i=1[Di logp1g1(yi) + (1− Di )logp0g0(yi)]

I θ(t): estimate of θ after tth iteration
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EM Algorithm

I E step
I Computes the conditional expectation of lc(θ) given the

observed data y and current parameter estimates θ = θ(t)

I M step
I Finds the updated estimate θ(t+1) for θ by maximizing

E (lc(θ)|y, θ = θ(t))

...details (Next time)
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Next time

I Details for EM algorithm

I Some math proofs

I Simulation study
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