BIOST 572 Presentation 1

JooYoon Han

Department of Biostatistics University of Washington

April 15, 2014

Nonparametric Estimation of ROC Curves in the Absence of a Gold Standard

Xiao-Hua Zhou,^{1,2,*} Pete Castelluccio,^{3,**} and Chuan Zhou^{2,***}

¹HSR&D VA Puget Sound Health Care System, Seattle, Washington 98101, U.S.A. ²Department of Biostatistics, University of Washington, Box 357232, Seattle, Washington 98195, U.S.A. ³Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, Indiana 46202, U.S.A. *email: azhou@u.washington.edu **email: cploastel@iupui.edu ***email: cplou@u.washington.edu

Biometrics 61, 600-609 June 2005

2

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Gold Standard

- What is a Gold standard test?
 - Diagnostic test that is the best available under reasonable conditions
 - The most accurate test possible without restrictions
 - In medicine, the gold standard test is less accurate than the autopsy
- Gold standard ambiguity
 - "Sometimes" the best performing test available
 - "Other times" the best test available under reasonable conditions (Example: MRI)

イロト イヨト イヨト イヨト ヨー のくの

Absence of a Gold Standard

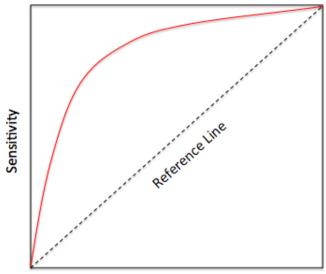
- Difficult to perform
- Expensive
- Impossible to perform on a living person
- This type of bias is called "Imperfect Gold Standard Bias"

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの

Receiver Operating Characteristic (ROC)

- What is a ROC curve?
 - Method of describing the accuracy of a test apart from the decision thresholds
 - Plot of a test's true positive rate (or sensitivity) versus its false postive rate (or 1-specificity)
 - The most valuable tool for describing and comparing the accuracies of diagnostic tests
- Comparing the ROC curves
 - Best when the curve is near left upper end
 - Compare using Area Under the Curve (AUC) which is overall measure of test performance
 - Near 1: Excellence
 - Near 0.5: Fail

Receiver Operating Characteristic (ROC)



1-Specificity

(1)() (1)()() (1)() (1)() (1)() (1)

ROC curve for ordinal-scale tests

- Nonparametric ROC curve based on the discrete sensitivity and specificity
- Continuous ROC curve of a latent variable underlying the observable ordinal data

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Previous Works

- Only a few published papers have dealt with the estimation of ROC curves of ordinal or continuous scale tests in the absence of a gold standard
- Henkelman, Kay, and Bronskill (1990)
 - Maximum likelihood estimation method for ROC curve of a 5-point rating scale using a multivariate normal mixture latent model
 - Limitation: Latent random variables from multiple ordinal-scale tests are assumed to follow MVN
- Hall and Zhou (2003)
 - Nonparametric estimator for the ROC curve of continuous-scale tests under the conditional independece assumption when the number of tests is more than two

Previous Works

- This paper will apply the ideas of Hall and Zhou (2003)
- Focus on a nonparametric maximum likelihood (ML) method under the conditional independence assumption

Setup

- N patients
- K diagnostic tests
- Scored on an ordinal scale from 1 to J
- Disease status is unknown for all N patients
- $T_1, ..., T_K$: responses from K tests for a particular patient

Nonparametric ROC Curve

- Vary the threshold for a positive test
- Calculate J+1 pairs of true positive rates (TPR) and false positive rates (FPR)

イロト イポト イヨト イヨト 二日

Nonparametric ROC Curve

Specifically, for kth test

- Define a positive test as one with $T_k \ge j$, j=1,...,J+1
- $\mathsf{TPR}_k(j) = \mathsf{P}(\mathsf{T}_k \geq j | D = 1)$
- $\blacktriangleright FPR_k(j) = P(T_k \ge j | D = 0)$
- $\blacktriangleright TPR_k(1) = FPR_k(1) = 1$
- $TPR_k(J+1) = FPR_k(J+1) = 0$

A discrete ROC curve is defined as a discrete function of $(FPR_k(j), TPR_k(j))$, j=1,...,J+1.

We obtain nonparamtric ROC curve by connecting coordinates with linear lines.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

Nonparametric ROC Curve

Define

- $\phi_{0kj} = P(T_k = j | D = 0)$ and $\phi_{1kj} = P(T_k = j | D = 1)$
- $FPR_k(j) = \sum_{l=j}^J \phi_{0kl}$
- $TPR_k(j) = \sum_{l=j}^J \phi_{1kl}$
- ► ROC curve and AUC: functions of φ_{0kj} and φ_{1kj} because coordinates of the nonparametric ROC curve of T_k are (FPR_k(j), TPR_k(j))

イロト 不得下 イヨト イヨト 二日

Nonparametric ML method

We wish to find MLEs for these parameters and calculate MLEs for the ROC curve and its area under each of the K tests.

Define,

$$y_{ikj} = \begin{cases} 1 & \text{if } x = \text{response of kth test is } j \text{ for the ith patient} \\ 0 & \text{if otherwise} \end{cases}$$

where i=1,...,N, k=1,...,K, and j=1,...,J

Test score vector for the *i*th patient is

$$\mathbf{y}_{\mathbf{i}} = (y_{i11}, ..., y_{i1J}, ..., y_{iK1}, ..., y_{iKJ})$$

Nonparametric ML method

$$g_{d}(\mathbf{y}_{\mathbf{i}}) = P(\mathbf{y}_{\mathbf{i}}|D_{i} = d)$$

=
$$\prod_{k=1}^{K} \prod_{j=1}^{J} [\phi_{dkj}]^{y_{i}kj} (conditional independence of the K tests)$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Nonparametric ML method

Assume a Bernoulli distribution for D with $p_d = P(D = d)$ for d=0,1

- Likelihood contributed by the ith patient
 - $P(\mathbf{y_i}) = p_1 g_1(\mathbf{y_i}) + p_0 g_0(\mathbf{y_i})$
- Joint log likelihood

►
$$l(p_1, \phi_0, \phi_1) = \sum_{i=1}^{N} log[p_0g_0(\mathbf{y_i}) + p_1g_1(\mathbf{y_i})]$$

where $p_0 = 1 - p_1$ and $\phi_d = (\phi_{d11}, ..., \phi_{d1J}, ..., \phi_{dK1}, ..., \phi_{dKJ})$

Goal: Find the ML estimates for $p_1, \phi_0, and \phi_1 \Rightarrow EM$ algorithm

EM Algorithm

- Complete data: (y, D)
- $\bullet \ \theta = (p_1, \phi_0, \phi_1)$
- ► $l_c(\theta) = \sum_{i=1}^{N} [D_i logp_1 g_1(\mathbf{y}_i) + (1 D_i) logp_0 g_0(\mathbf{y}_i)]$
- $\theta^{(t)}$: estimate of θ after *t*th iteration

EM Algorithm

- E step
 - Computes the conditional expectation of *l_c*(θ) given the observed data y and current parameter estimates θ = θ^(t)
- M step
 - Finds the updated estimate $\theta^{(t+1)}$ for θ by maximizing $E(I_c(\theta)|\mathbf{y}, \theta = \theta^{(t)})$

...details (Next time)

Next time

- Details for EM algorithm
- Some math proofs
- Simulation study

◆□> ◆□> ◆三> ◆三> ・三 ・ のへの