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Problem

The procedure that establishes the patient’s true disease status is
referred to as a gold standard. But..

I A perfect gold standard may exist but unavailable

I A perfect gold standard may not exist

I A perfect gold standard may be impossible to perform

⇒ What if we want to evaluate the accuracy of the diagnostic test
by estimating ROC curves when a gold standard does exist but is
unavailable?
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Problem

There are not many published papers have dealt with the
estimation of ROC curves in the absence of a gold standard
(especially with continuous or ordinal scale tests)

I Henkelman, Kay, and Bronskill (1990) - MLE method for the
ROC curve of a 5-point rating scale using a multivariate
normal mixture latent model

I Limitation: Multivariate normal distribution assumption

I Hall and Zhou (2003) - Nonparametric method for
continuous-scale tests under conditional independence
assumption when the number of tests is more than two

⇒ Apply ideas of Hall and Zhou (2003) for ordinal-scale tests
when the number of tests is more than two
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Setup

I N patients, K diagnostic tests with scale from 1 to J (ordinal)

I Disease status D is unknown for all N patients

I T1,...,TK : responses from K tests for a particular patient

I yikj =

{
1 if x = response of kth test is j for the ith patient

0 if otherwise

I φ0kj = P(Tk = j |D = 0)

I φ1kj = P(Tk = j |D = 1)

I p0 = P(D = 0) and p1 = P(D = 1)
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Setup

gd(yi) = P(yi|Di = d)

=
K∏

k=1

J∏
j=1

P(Tk = j |Di = d)yikj (conditional indep of the K tests)

=
K∏

k=1

J∏
j=1

[φdkj ]
yikj
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Setup

FPRk(j) =
∑J

l=j φ0kl and TPRk(j) =
∑J

l=j φ1kl

The area under the ROC curve for the kth test can be written as
follows:
Ak =

∑J−1
j=1 [φ0kj

∑J
l=j+1 φ1kl ] + 1

2

∑J
j=1 φ0kjφ1kj

6



EM Algorithm

I Observed data: (y)

I Unobserved data: (D)

I Complete data: (y, D)

I Parameter: θ=(p1, φ0, φ1)

I Estimate of θ after the tth iteration: θ(t)
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EM algorithm

E step: E(lc(θ)|y, θ = θ(t))
=

∑N
i=1

∑1
d=0 P(Di = d |yi, θ(t))logpdgd(yi)

=
∑N

i=1

∑1
d=0 q

(t)
id logpdgd(yi)

M step: p
(t+1)
1 = 1

N

∑N
i=1 q

(t)
i1

φ
(t+1)
dkj =

∑N
i=1 q

(t)
id yikj∑N

i=1 q
(t)
id
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Initial Values

I Impute the missing true disease status by the majority rule

I Get initial values for p1, φ0kj , φ1kj
I EM algorithm with these initial values for simulation
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Simulation-Set up

I N=118

I J=5

I K=7

I True prevalence p1=0.5, 0.7, and 0.9

I Calculate Bias and MSE of the estimators (p1 and AUC)
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Simulation-Set up

500 simulations for

I Equal AUCs for 7 diagnostic tests (0.7, 0.8, and 0.9)

I Unequal AUCs for 7 diagnostic tests

I Compare nonparametric approach to a parametric approach
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Simulation-Result

Result from 500 simulations
for equal AUCs for 7 diagnostic tests when the true prevalence is 0.5.
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Simulation-Result

Result from 500 simulations
for equal AUCs for 7 diagnostic tests when the true prevalence is 0.7.
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Simulation-Result

Result from 500 simulations
for equal AUCs for 7 diagnostic tests when the true prevalence is 0.9.

14



Simulation-Result

I In general, smaller bias and MSE for the higher AUCs

I The estimators perform better when the tests distinguish the
disease status better
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Simulation-Result

Result from 500 simulations when
AUCs are 0.7 for 7 diagnostic tests for different true prevalence rates.
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Simulation-Result

Result from 500 simulations when
AUCs are 0.8 for 7 diagnostic tests for different true prevalence rates.
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Simulation-Result

Result from 500 simulations when
AUCs are 0.9 for 7 diagnostic tests for different true prevalence rates.
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Simulation-Result

Bias and MSE for estimated AUCs from 500 simulations for
unequal AUCs for 7 diagnostic tests.
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Simulation-Result

I In general, smaller bias and MSE for the smaller true
prevalence rate

I The estimators perform better when the true prevalence rate
is 0.5
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Simulation-Result

Bias and MSE for estimated prevalence rates from 500 simulations
for equal AUCs for 7 diagnostic tests.
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Simulation-Result

I In general, smaller bias and MSE for the higher AUCs

I The estimators perform better when the tests distinguish the
disease status better
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Simulation-Result

Bias and MSE for estimated AUCs from 500 simulations with
unequal AUCs for 7 diagnostic tests for different true prevalence
rates.
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Simulation-Result

Bias and MSE for estimated AUCs from 500 simulations with
unequal AUCs for 7 diagnostic tests for non parametric approach
and parametric approach when the true prevalence is 0.5.
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Simulation-Result

Bias and MSE for estimated AUCs from 500 simulations with
unequal AUCs for 7 diagnostic tests for non parametric approach
and parametric approach when the true prevalence is 0.7.
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Simulation-Result

Bias and MSE for estimated AUCs from 500 simulations with
unequal AUCs for 7 diagnostic tests for non parametric approach
and parametric approach when the true prevalence is 0.9.
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Simulation-Result

I In general, small bias and MSE for both approach

I In general, non parametric approach seems more stable

I Non parametric approach does not have distributional
assumptions
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Conclusion

I This method can evaluate performances of tests in the
absence of a gold standard when we have ordinal-scale tests

I Two assumptions: conditional independence of the K tests
and the number of tests is more than two

I Simulation studies show that this method works well in terms
of bias and MSE

I Simulation studies show that this method is more stable than
the parametric method in terms of bias and MSE
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Future Work-Fisher’s Information Matrix

I E [−∂2l(p1,φ0,φ1)
∂p21

],E [−∂2l(p1,φ0,φ1)
∂p1∂φ0kj

],E [−∂2l(p1,φ0,φ1)
∂p1∂φ1kj

]

I E [−∂2l(p1,φ0,φ1)
∂φ0kj∂φ0kj

],E [−∂2l(p1,φ0,φ1)
∂φ0kj∂φ1kj

],E [−∂2l(p1,φ0,φ1)
∂φ1kj∂φ1kj

]
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