Nonparametric Estimation of ROC Curves in the Absence of a Gold Standard (Biometrics 2005)

Xiao-Hua Zhou, Pete Castelluccio and Chuan Zhou As interpreted by: JooYoon Han

> Department of Biostatistics University of Washington

> > May 27, 2014

Problem

The procedure that establishes the patient's true disease status is referred to as a gold standard. But..

- ► A perfect gold standard may exist but unavailable
- A perfect gold standard may not exist
- A perfect gold standard may be impossible to perform
- ⇒ What if we want to evaluate the accuracy of the diagnostic test by estimating ROC curves when a gold standard does exist but is unavailable?

Problem

There are not many published papers have dealt with the estimation of ROC curves in the absence of a gold standard (especially with continuous or ordinal scale tests)

- ► Henkelman, Kay, and Bronskill (1990) MLE method for the ROC curve of a 5-point rating scale using a multivariate normal mixture latent model
 - ► Limitation: Multivariate normal distribution assumption
- Hall and Zhou (2003) Nonparametric method for continuous-scale tests under conditional independence assumption when the number of tests is more than two
- \Rightarrow Apply ideas of Hall and Zhou (2003) for ordinal-scale tests when the number of tests is more than two

Setup

- ▶ N patients, K diagnostic tests with scale from 1 to J (ordinal)
- Disease status D is unknown for all N patients
- $ightharpoonup T_1,...,T_K$: responses from K tests for a particular patient
- $y_{ikj} = \begin{cases} 1 & \text{if } x = \text{response of kth test is } j \text{ for the ith patient} \\ 0 & \text{if otherwise} \end{cases}$

- $p_0 = P(D = 0)$ and $p_1 = P(D = 1)$

Setup

$$g_{d}(\mathbf{y_{i}}) = P(\mathbf{y_{i}}|D_{i} = d)$$

$$= \prod_{k=1}^{K} \prod_{j=1}^{J} P(T_{k} = j|D_{i} = d)^{y_{ikj}} (conditional indep of the K tests)$$

$$= \prod_{k=1}^{K} \prod_{j=1}^{J} [\phi_{dkj}]^{y_{i}kj}$$

Setup

$$\mathsf{FPR}_k(j) = \sum_{l=j}^J \phi_{0kl}$$
 and $\mathsf{TPR}_k(j) = \sum_{l=j}^J \phi_{1kl}$

The area under the ROC curve for the k_{th} test can be written as follows:

$$A_k = \sum_{j=1}^{J-1} [\phi_{0kj} \sum_{l=j+1}^{J} \phi_{1kl}] + \frac{1}{2} \sum_{j=1}^{J} \phi_{0kj} \phi_{1kj}$$

EM Algorithm

- ► Observed data: (y)
- ▶ Unobserved data: (**D**)
- ► Complete data: (y, D)
- ▶ Parameter: $\theta = (p_1, \phi_0, \phi_1)$
- Estimate of θ after the t^{th} iteration: $\theta^{(t)}$

EM algorithm

E step:
$$\mathsf{E}(I_c(\theta)|\mathbf{y},\theta=\theta^{(t)})$$

$$= \sum_{i=1}^N \sum_{d=0}^1 P(D_i=d|\mathbf{y_i},\theta^{(t)}) logp_d g_d(\mathbf{y_i})$$

$$= \sum_{i=1}^N \sum_{d=0}^1 q_{id}^{(t)} logp_d g_d(\mathbf{y_i})$$
M step: $p_1^{(t+1)} = \frac{1}{N} \sum_{i=1}^N q_{i1}^{(t)}$

$$\phi_{dkj}^{(t+1)} = \frac{\sum_{i=1}^N q_{id}^{(t)} y_{ikj}}{\sum_{i=1}^N q_{id}^{(t)}}$$

Initial Values

- ▶ Impute the missing true disease status by the majority rule
- ▶ Get initial values for $p_1, \phi_{0kj}, \phi_{1kj}$
- ▶ EM algorithm with these initial values for simulation

Simulation-Set up

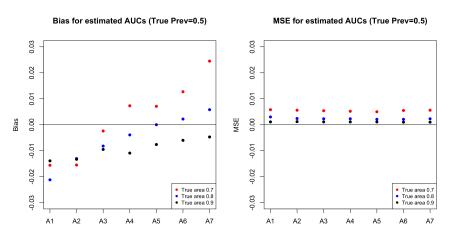
- ► N=118
- ► J=5
- ► K=7
- ▶ True prevalence p_1 =0.5, 0.7, and 0.9
- ▶ Calculate Bias and MSE of the estimators (p_1 and AUC)

Simulation-Set up

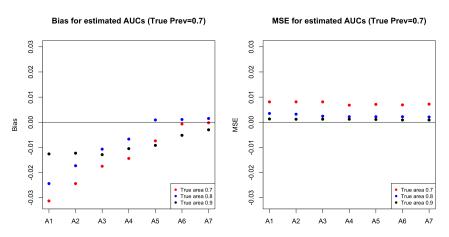
500 simulations for

- ► Equal AUCs for 7 diagnostic tests (0.7, 0.8, and 0.9)
- Unequal AUCs for 7 diagnostic tests
- Compare nonparametric approach to a parametric approach

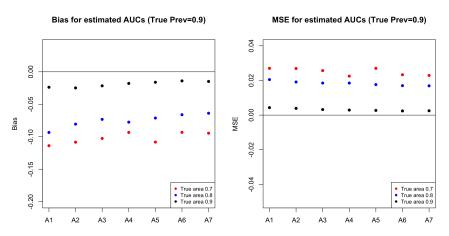
Result from 500 simulations for equal AUCs for 7 diagnostic tests when the true prevalence is 0.5.



Result from 500 simulations for equal AUCs for 7 diagnostic tests when the true prevalence is 0.7.

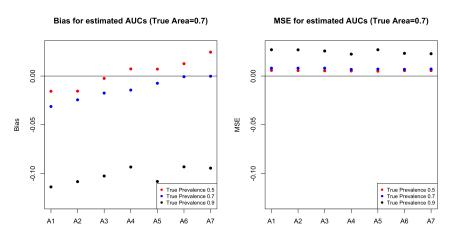


Result from 500 simulations for equal AUCs for 7 diagnostic tests when the true prevalence is 0.9.

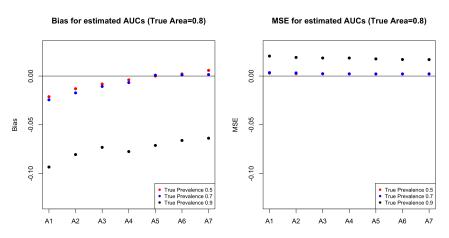


- ▶ In general, smaller bias and MSE for the higher AUCs
- ► The estimators perform better when the tests distinguish the disease status better

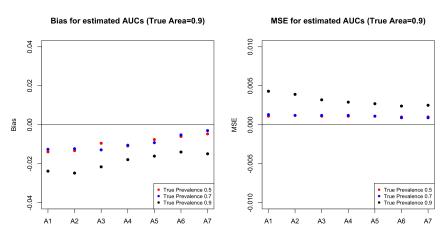
Result from 500 simulations when AUCs are 0.7 for 7 diagnostic tests for different true prevalence rates.



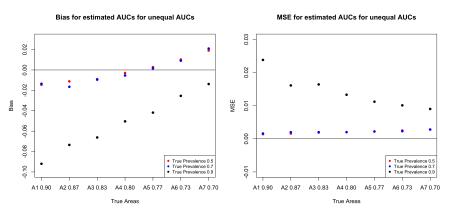
Result from 500 simulations when AUCs are 0.8 for 7 diagnostic tests for different true prevalence rates.



Result from 500 simulations when AUCs are 0.9 for 7 diagnostic tests for different true prevalence rates.

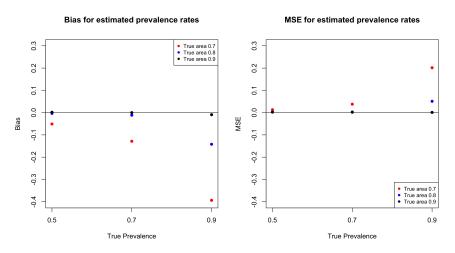


Bias and MSE for estimated AUCs from 500 simulations for unequal AUCs for 7 diagnostic tests.



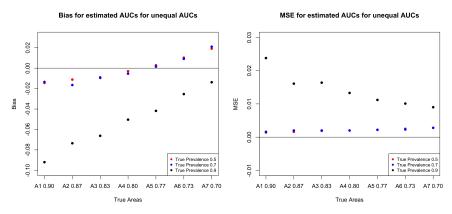
- ► In general, smaller bias and MSE for the smaller true prevalence rate
- ► The estimators perform better when the true prevalence rate is 0.5

Bias and MSE for estimated prevalence rates from 500 simulations for equal AUCs for 7 diagnostic tests.

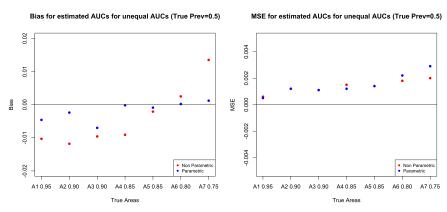


- ▶ In general, smaller bias and MSE for the higher AUCs
- ► The estimators perform better when the tests distinguish the disease status better

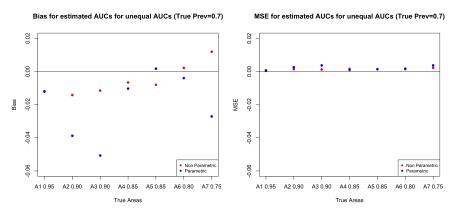
Bias and MSE for estimated AUCs from 500 simulations with unequal AUCs for 7 diagnostic tests for different true prevalence rates.



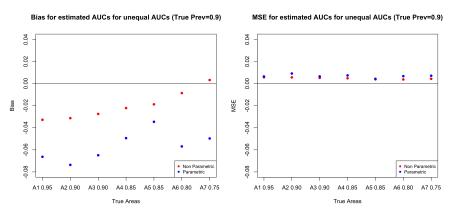
Bias and MSE for estimated AUCs from 500 simulations with unequal AUCs for 7 diagnostic tests for non parametric approach and parametric approach when the true prevalence is 0.5.



Bias and MSE for estimated AUCs from 500 simulations with unequal AUCs for 7 diagnostic tests for non parametric approach and parametric approach when the true prevalence is 0.7.



Bias and MSE for estimated AUCs from 500 simulations with unequal AUCs for 7 diagnostic tests for non parametric approach and parametric approach when the true prevalence is 0.9.



- ▶ In general, small bias and MSE for both approach
- ▶ In general, non parametric approach seems more stable
- Non parametric approach does not have distributional assumptions

Conclusion

- ► This method can evaluate performances of tests in the absence of a gold standard when we have ordinal-scale tests
- ► Two assumptions: conditional independence of the K tests and the number of tests is more than two
- Simulation studies show that this method works well in terms of bias and MSE
- ► Simulation studies show that this method is more stable than the parametric method in terms of bias and MSE

Future Work-Fisher's Information Matrix

$$\qquad \qquad E\big[-\frac{\partial^2 I(\rho_1,\phi_0,\phi_1)}{\partial \rho_1^2}\big], E\big[-\frac{\partial^2 I(\rho_1,\phi_0,\phi_1)}{\partial \rho_1 \partial \phi_{0kj}}\big], E\big[-\frac{\partial^2 I(\rho_1,\phi_0,\phi_1)}{\partial \rho_1 \partial \phi_{1kj}}\big]$$

$$E\left[-\frac{\partial^2 I(p_1,\phi_0,\phi_1)}{\partial \phi_{0kj}\partial \phi_{0kj}}\right], E\left[-\frac{\partial^2 I(p_1,\phi_0,\phi_1)}{\partial \phi_{0kj}\partial \phi_{1kj}}\right], E\left[-\frac{\partial^2 I(p_1,\phi_0,\phi_1)}{\partial \phi_{1kj}\partial \phi_{1kj}}\right]$$