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Categorical data setup

Classical framework with binary responses:

yi ∼ Bernoulli(pi )

pi = g−1(ηi ), g
−1 : R→ (0, 1)

ηi = xiβ, i = 1, . . . , n

xi = ( xi1 . . . xip )

β = ( β1 . . . βp )T

Put a prior on the unknown coefficients:

β ∼ π(β)

Inferential goal: compute posterior π(β | y) ∝ p(y | β)π(β)
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Holmes & Held (H&H) set out to take regression models for
categorical outcomes and ...
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Why is logistic regression hard to Bayesify?

I Maximum likelihood not that easy either!
I Fit using iterative methods
I Asymptotics sidestep unknown finite sample distributions

I No conjugate priors /
I Most previous approaches involve Metropolis-Hastings and

need tuning, or otherwise rely on accept-reject steps (e.g.
Gamerman, 1997; Chen & Dey, 1998)

I Adaptive-rejection sampling (Dellaportas & Smith, 1993) only
updates individual coefficients, resulting in poor mixing when
coefficients are correlated

What we would like: automatic and efficient Bayesian inference
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Mixing demonstration
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H&H goals

H&H address four aspects of Bayesian inference for categorical
data regression models:

(1) Probit link: use auxiliary variable method from Albert & Chib
(A&C, 1993) to run MCMC automatically with Gibbs
sampling, but with efficient joint updates

(2) Logit link: make auxiliary variable method and joint updating
work with logistic regression

(3) Model uncertainty: extend methods to situations with
uncertain covariate sets (e.g. Bayesian model averaging)

(4) Polychotomous data: extend methods to data with more
than two outcomes
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Probit regression

A&C auxiliary variable approach: introduce unobserved auxiliary
variables zi and re-write the probit model as

yi = 1[zi>0]

zi= xiβ + εi

εi ∼ N(0, 1)

β ∼ π(β)

Equivalent to probit model in standard framework:

pi = P(zi > 0 | β) = P(xiβ + εi > 0 | β)

= 1− Φ(−xiβ) = Φ(xiβ) = g−1(xiβ)
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Probit regression
From joint posterior, obtain nice conditional distributions of the
parameters to simulate from in Gibbs steps:

π(β, z | y) ∝ p(y | β, z)︸ ︷︷ ︸
=p(y|z)

p(z | β)π(β), so :

I π(β | z, y) ∝ p(z | β)π(β) = π(β)
∏n

i=1 p(zi | β)︸ ︷︷ ︸
N(xiβ,1)

If we use a normal prior for π(β), then π(β | z, y) is also
normal

I π(z | β, y) ∝ p(y | z)p(z | β)

=
n∏

i=1

(
1[zi>0]1[yi=1] + 1[zi≤0]1[yi=0]

)
φ(zi − xiβ)︸ ︷︷ ︸

π(zi |β,yi )∼=truncated normal
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Smarter probit Gibbs

H&H improve mixing by updating (β, z) jointly: simulate from
π(z | y), then from π(β | z, y). Assuming π(β) normal:

π(β, z | y)︸ ︷︷ ︸
(known form)

= π(β | z, y)︸ ︷︷ ︸
normal

π(z | y) implies

π(z | y) ∼ truncated multivariate normal

Truncated multivariate normal hard to sample from, but univariate
conditionals can be Gibbsed:

π(zi | z−i , y) ∼=

{
N (mi , vi ) 1[zi>0] if yi = 1

N (mi , vi ) 1[zi≤0] if yi = 0

where mi and vi are known (ugly) functions of z, data, and prior
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Logistic regression

So far: sampling the posterior for a Bayesian probit model can be

done automatically and efficiently! ,
Probit is a reasonable model for binary valued data, so why bother
with a logit extension?

I Coefficients correspond to change in log odds

I Logit link has heavier tails than probit

I Probit link is not analytic and observations corresponding to
extreme predicted probabilities can have numerical issues
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From probit to logit

How to extend auxiliary variables to logistic regression?

yi = 1[zi>0]

zi= xiβ + εi

εi ∼ N(0, λi )

λi= (2ψi )
2, ψi ∼ KS

β ∼ π(β)

Equivalent to logit model because εi has a logistic distribution
(Andrews & Mallows, 1974) and CDF of logistic is expit function:

pi = P(zi > 0 | β) = P(εi > −xiβ | β)

= 1− expit(−xiβ) = expit(xiβ) = g−1(xiβ)
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Logistic Gibbs

In similar fashion to probit model, simulate from posterior
conditionals:

π(β, z,λ | y) ∝ p(y | β, z,λ)︸ ︷︷ ︸
=p(y|z)

p(z | β,λ)p(λ)π(β)

π(β | z,λ, y) ∝ p(z | β,λ)π(β) ∼= normal if π(β) normal

π(z | β,λ, y) ∝ p(y | z)p(z | β,λ) ∼= indep. truncated normals

π(λ | β, z, y) ∝ p(z | β,λ)p(λ) ∼= indep. normal× KS2

This last conditional distribution is non-standard, but easy to
simulate from (no tuning needed)
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Smarter logistic Gibbs

Joint updates for logistic to speed up mixing? A couple of
possibilities:

(A) π(z,λ | β, y) = π(z | β, y)︸ ︷︷ ︸
truncated logistic

π(λ | β, z)︸ ︷︷ ︸
rejection

followed by

π(β | z,λ)︸ ︷︷ ︸
normal

(B) π(β, z | λ, y) = π(z | λ, y)︸ ︷︷ ︸
truncated normal

π(β | z,λ)︸ ︷︷ ︸
normal

followed by

π(λ | β, z)︸ ︷︷ ︸
rejection
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Next time, aspirationally

I Performance of joint updating scheme for probit regression

I Performance of two joint updating schemes for logistic
regression

I Auxiliary variable approaches under model uncertainty

I Auxiliary variable approaches with polychotomous outcomes

I What’s happened since H&H 2006? (Go to the James Scott
seminar next Thursday!)
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