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Categorical data setup

Classical framework with binary responses:

yi ∼ Bernoulli(pi )

pi = g−1(ηi ), g
−1 : R→ (0, 1)

ηi = xiβ, i = 1, . . . , n

xi = ( xi1 . . . xip )

β = ( β1 . . . βp )T

Put a prior on the unknown coefficients:

β ∼ π(β)

Inferential goal: compute posterior π(β | y) ∝ p(y | β)π(β)
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Holmes & Held (H&H) set out to take regression models for
categorical outcomes and ...
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Why is logistic regression hard to Bayesify?

I Maximum likelihood not that easy either!
I Fit using iterative methods
I Asymptotics sidestep unknown finite sample distributions

I No conjugate priors /
I Most previous approaches involve Metropolis-Hastings and

need tuning, or otherwise rely on accept-reject steps (e.g.
Gamerman, 1997; Chen & Dey, 1998)

I Adaptive-rejection sampling (Dellaportas & Smith, 1993) only
updates individual coefficients, resulting in poor mixing when
coefficients are correlated

What we would like: automatic and efficient Bayesian inference
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H&H goals

H&H address four aspects of Bayesian inference for categorical
data regression models:

(1) Probit link: use auxiliary variable method from Albert & Chib
(A&C, 1993) to run MCMC automatically with Gibbs
sampling, but with efficient joint updates

(2) Logit link: make auxiliary variable method and joint updating
work with logistic regression

(3) Model uncertainty: extend methods to situations with
uncertain covariate sets (e.g. Bayesian model averaging)

(4) Polytomous data: extend methods to data with more than
two outcomes
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Probit regression

A&C auxiliary variable approach: introduce unobserved auxiliary
variables zi and re-write the probit model as

yi = 1[zi>0]

zi= xiβ + εi

εi ∼ N(0, 1)

β ∼ π(β) (typically normal)

Equivalent to probit model in standard framework:

pi = P(zi > 0 | β) = P(xiβ + εi > 0 | β)

= 1− Φ(−xiβ) = Φ(xiβ) = g−1(xiβ)
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Probit Gibbs steps (A&C)
From joint posterior, obtain nice conditional distributions of the
parameters to simulate from in Gibbs steps:

π(β, z | y) ∝ p(y | β, z)︸ ︷︷ ︸
=p(y|z)

p(z | β)π(β), so :

I π(β | z, y) ∝ p(z | β)π(β) = π(β)
∏n

i=1 p(zi | β)︸ ︷︷ ︸
N(xiβ,1)

If we use a normal prior for π(β), then π(β | z, y) is also
normal

I π(z | β, y) ∝ p(y | z)p(z | β)

=
n∏

i=1

(
1[zi>0]1[yi=1] + 1[zi≤0]1[yi=0]

)
φ(zi − xiβ)︸ ︷︷ ︸

π(zi |β,yi )∼=truncated normal
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Smarter probit sampling?

H&H improve mixing by updating (β, z) jointly: simulate from
π(z | y), then from π(β | z, y). Assuming π(β) normal:

π(β, z | y)︸ ︷︷ ︸
(known form)

= π(β | z, y)︸ ︷︷ ︸
normal

π(z | y) implies

π(z | y) ∼ truncated multivariate normal

Truncated multivariate normal hard to sample from directly, but
univariate conditionals can be Gibbsed:

π(zi | z−i , y) ∼=

{
N (mi , vi ) 1[zi>0] if yi = 1

N (mi , vi ) 1[zi≤0] if yi = 0

where mi and vi are known (ugly) functions of z, data, and prior
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Test data

H&H analyze several stock datasets with binary outcomes:

I Pima Indian data (n = 532, p = 8): outcome is diabetes;
covariates include BMI, age, number of pregnancies

I Australian credit data (n = 690, p = 14): outcome is credit
approval; 14 generic covariates

I Heart disease data (n = 270, p = 13): outcome is heart
disease; covariates include age, sex, blood pressure, chest pain
type

I German credit data (n = 1000, p = 24): outcome is good vs.
bad credit risk; covariates include checking account status,
purpose of loan, gender and marital status
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Example probit posterior: iterative sampling
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Example probit posterior: joint sampling
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Efficient Bayesian inference

How might we see if a MCMC sampling algorithm is efficient?

I Time elapsed to run M iterations

I Average update distance: measure mixing with

1

M − 1

M−1∑
i=1

‖β(i+1) − β(i)‖

I Effective sample size (ESS) for a single parameter:

ESS =
M

1 + 2
∑∞

k=1 ρ(k)

where ρ(k) = monotone sample autocorrelation at lag k
(Kass et al, 1998)

Testing procedure: compute these metrics on each of 10 runs of
M =10,000 iterations per run (discard 1,000 burn-in)
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Probit performance: absolute
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From probit to logit

Extend auxiliary variables to logistic regression with another level
for variance of the error terms:

yi = 1[zi>0]

zi= xiβ + εi

εi ∼ N(0, λi )

λi= (2ψi )
2, ψi ∼ KS (Kolmogorov-Smirnov)

β ∼ π(β)

Equivalent to logit model because εi has a logistic distribution
(Andrews & Mallows, 1974) and CDF of logistic is expit function:

pi = P(zi > 0 | β) = P(εi > −xiβ | β)

= 1− expit(−xiβ) = expit(xiβ) = g−1(xiβ)
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Logistic Gibbs

In similar fashion to probit model, simulate from posterior
conditionals:

π(β, z,λ | y) ∝ p(y | β, z,λ)︸ ︷︷ ︸
=p(y|z) truncators

p(z | β,λ)︸ ︷︷ ︸
indep. normal

p(λ)︸︷︷︸
KS2

π(β)︸ ︷︷ ︸
normal

π(β | z,λ, y) ∝ p(z | β,λ)π(β) ∼= normal

π(z | β,λ, y) ∝ p(y | z)p(z | β,λ) ∼= indep. truncated normals

π(λ | β, z, y) ∝ p(z | β,λ)p(λ) ∼= indep. normal× KS2

Last conditional distribution is non-standard, but can be simulated
using rejection sampling with Generalized Inverse Gaussian
proposals and alternating series representation (“squeezing”)
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Joint updates for mixing

H&H propose using factorizations of the joint posterior for updates.

I Probit: simulate from π(z | y), then from π(β | z, y)

π(β, z | y) = π(z | y)︸ ︷︷ ︸
truncated multivariate normal

π(β | z, y)︸ ︷︷ ︸
normal

I Logistic: a couple of possibilities

(A) π(z,λ | β, y) = π(z | β, y)︸ ︷︷ ︸
truncated ind logistic

π(λ | β, z)︸ ︷︷ ︸
normal×KS2

, then π(β | z,λ)︸ ︷︷ ︸
normal

(B) π(β, z | λ, y) = π(z | λ, y)︸ ︷︷ ︸
truncated mv normal

π(β | z,λ)︸ ︷︷ ︸
normal

, then π(λ | β, z)︸ ︷︷ ︸
normal×KS2
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Logistic performance: absolute
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Model uncertainty

Suppose we have our set of p covariates but don’t know which to
include in our logistic regression model.

An approach: yet more latent variables

γj =

{
1 if βj in model

0 if βj not in model
, j = 1, . . . , p

Now, we condition β on γ so zi = xiβ + εi becomes

zi = xiγβγ + εi =

p∑
j=1

xijγβjγj + εi

Then: estimate π(γj = 1 | y) (among other interesting quantities)
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Updating scheme

Posterior:

π(β,γ, z,λ | y) ∝ p(y | z)p(z | β,γ,λ)p(λ)π(β | γ)π(γ)

Update sets of coefficients with blocked Gibbs iterations:

(1) π(γ,β | z,λ, y) ∝ p(z | β,γ,λ)︸ ︷︷ ︸
N(xβγ ,Λγ)

π(β | γ)︸ ︷︷ ︸
N(bγ ,vγ)

π(γ) using M-H

(2) π(z,λ | γ,β, y) = π(z | β,γ, y)︸ ︷︷ ︸
truncated logistic

π(λ | β,γ, z)︸ ︷︷ ︸
normal×KS2

Note that we update (β,γ) simultaneously and jump dimensions –
much harder to do with iterative sampling
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Metropolis-Hastings step
Target density:

π(γ,β | z,λ, y) ∝ π(β | z,γ,λ, y)︸ ︷︷ ︸
N(Bγ ,Vγ)

π(γ)

with Bγ ,Vγ determined by γ, z,λ,b, v, x

(i) Given current (γ,β, z,λ), propose from

Q(γ∗,β∗ | γ,β) = q(γ∗ | γ)︸ ︷︷ ︸
proposal density

π(β∗ | z,γ∗,λ, y)︸ ︷︷ ︸
N(Bγ∗ ,Vγ∗ )

(ii) Accept (γ∗,β∗) as update with probability

α = min

{
1,
|Vγ∗ |1/2|vγ |1/2 exp(0.5BT

γ∗V−1γ∗ Bγ∗)π(γ∗)q(γ | γ∗)
|Vγ |1/2|vγ∗ |1/2 exp(0.5BT

γ V−1γ Bγ)π(γ)q(γ∗ | γ)

}
(iii) Otherwise stay in current state of (γ,β, z,λ)
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From dichotomous to polytomous

Generalize the logistic regression model for classification problems
by allowing unordered outcomes {1, 2, . . . ,Q} instead of {0, 1}:

yi ∼ Multinomial(θi1, . . . , θiQ)

θij =
exp(xiβj)∑Q

k=1 exp(xiβk)

βQ = 0 for identifiability
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Polytomous sampling

Conditional likelihood has form of binary logistic regression:

L(βj | y,β−j) ∝
n∏

i=1

 exp(xiβj − Cij)

1 + exp(xiβj − Cij)︸ ︷︷ ︸
ηij


[yi=j]

· (1− ηij)[yi 6=j]

Cij =
∑
k 6=j

log exp(xiβk)

so in Bayesian framework bringing in priors and auxiliary variables,
we can Gibbs over each of the Q − 1 classes and treat each using
either of the logistic regression sampling schemes
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To do/lingering concerns

I More simulations: additional datasets, iterative updates for
logistic, model uncertainty, polytomous regression

I Numerical and speed issues with rejection sampler for
conditional distribution of λ in logistic models

I Deriving acceptance rate for M-H steps under model
uncertainty

I Scope issue: how much time/effort to devote to discussing
later work? (e.g. Pólya-Gamma model by Polson, Scott, and
Windle, or refinements by Frühwirth-Schnatter, Frühwirth,
Rue)
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