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Categorical data setup

Classical framework with binary responses:

yi ~ Bernoulli(p;)

pi=g *(m), g ' :R—(0,1)
ni:Xl'/Bv = 1,...,”

X,':( Xji1 ... X,'p )

/6:(51 5/3 )T

Put a prior on the unknown coefficients:

B~ m(B)

Inferential goal: compute posterior (3 | y) x p(y | B)7(8)



Holmes & Held (H&H) set out to take regression models for
categorical outcomes and ...
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Why is logistic regression hard to Bayesify?

» Maximum likelihood not that easy either!
» Fit using iterative methods

» Asymptotics sidestep unknown finite sample distributions
» No conjugate priors @

» Most previous approaches involve Metropolis-Hastings and
need tuning, or otherwise rely on accept-reject steps (e.g.
Gamerman, 1997; Chen & Dey, 1998)

» Adaptive-rejection sampling (Dellaportas & Smith, 1993) only
updates individual coefficients, resulting in poor mixing when
coefficients are correlated

What we would like: automatic and efficient Bayesian inference



Mixing demonstration
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H&H goals

H&H address four aspects of Bayesian inference for categorical
data regression models:

(1) Probit link: use auxiliary variable method from Albert & Chib
(A&C, 1993) to run MCMC automatically with Gibbs
sampling, but with efficient joint updates

(2) Logit link: make auxiliary variable method and joint updating
work with logistic regression

(3) Model uncertainty: extend methods to situations with
uncertain covariate sets (e.g. Bayesian model averaging)

(4) Polytomous data: extend methods to data with more than
two outcomes



Probit regression

A&C auxiliary variable approach: introduce unobserved auxiliary
variables z; and re-write the probit model as

Yi = 1iz>0]
zi= X3 + €
ei ~ N(0,1)

B ~ m(3) (typically normal)

Equivalent to probit model in standard framework:

pi=P(zi>0|B)=P(x;B+¢ >0]|p3)
=1 - &(—x;8) = ®(x;8) = g1 (x:B)



Probit Gibbs steps (A&C)

From joint posterior, obtain nice conditional distributions of the
parameters to simulate from in Gibbs steps:

(8,2 |y) x ply | B,2) p(z | B)7(8), 0 :
N——

=p(yl2)

> 7(B1zy) xp(z|B)r(B) ==(B) 1/ p(z | B)
——
N(x;8,1)

If we use a normal prior for 7(3), then 7(3 | z,y) is also
normal

» m(z | B,y) < p(y | 2)p(z | B)

=TI (Csoly=1 + Lz <oly,—0) ¢(zi — xiB)
=1

~
m(zi|B,yi)=truncated normal



Smarter probit sampling?

H&H improve mixing by updating (3, z) jointly: simulate from
m(z | y), then from (8 | z,y). Assuming () normal:

m(B,z|y) =7(B|z,y)m(z|y) implies

(known form

normal

)
m(z | y) ~ truncated multivariate normal

Truncated multivariate normal hard to sample from directly, but
univariate conditionals can be Gibbsed:

( ’ 7 ) ~ N(m,-, V,') 1[z,->0] if yi = 1
™\ Zj —i =
Y N (mj,vi) 1< ifyi=0

where m; and v; are known (ugly) functions of z, data, and prior



Test data

H&H analyze several stock datasets with binary outcomes:

» Pima Indian data (n = 532, p = 8): outcome is diabetes;
covariates include BMI, age, number of pregnancies

» Australian credit data (n = 690, p = 14): outcome is credit
approval; 14 generic covariates

» Heart disease data (n = 270, p = 13): outcome is heart
disease; covariates include age, sex, blood pressure, chest pain
type

» German credit data (n = 1000, p = 24): outcome is good vs.
bad credit risk; covariates include checking account status,
purpose of loan, gender and marital status
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Example probit posterior: iterative sampling

(Intercept) | |24
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Example probit posterior: joint sampling

(Intercept) | | -
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Efficient Bayesian inference
How might we see if a MCMC sampling algorithm is efficient?

» Time elapsed to run M iterations

> Average update distance: measure mixing with

M—
Z |8+ — gl

» Effective sample size (ESS) for a single parameter:
M
1+23707 p(k)

where p(k) = monotone sample autocorrelation at lag k
(Kass et al, 1998)

ESS =

Testing procedure: compute these metrics on each of 10 runs of
M =10,000 iterations per run (discard 1,000 burn-in)
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Probit performance: absolute
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From probit to logit

Extend auxiliary variables to logistic regression with another level
for variance of the error terms:

Yi = liz>0

zi=x;3+ ¢€;

ej ~ N(0, \;)

Ai= (2¢47)%, i ~ KS (Kolmogorov-Smirnov)
B~ n(B)

Equivalent to logit model because ¢; has a logistic distribution
(Andrews & Mallows, 1974) and CDF of logistic is expit function:

pi=P(zi > 0| B) = Ple; > —x;8|B)
=1 — expit(—x,;3) = expit(x;3) = gil(x,-,@)
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Logistic Gibbs

In similar fashion to probit model, simulate from posterior
conditionals:

m(B,z,A|y) < p(y|B,z,A) p(z|B,) QQ\) @

=p(y|z) truncators indep. normal KS2 normal
(B |z Ay) < p(z|B,A)7(B) = normal
w(z| B, A\ y) x p(y|z)p(z | B,A) = indep. truncated normals
7(X|B,z,y) x p(z| B, A)p(A) = indep. normal x KS?

Last conditional distribution is non-standard, but can be simulated
using rejection sampling with Generalized Inverse Gaussian
proposals and alternating series representation ( “squeezing”)
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Joint updates for mixing

H&H propose using factorizations of the joint posterior for updates.

» Probit: simulate from 7(z | y), then from 7(83 | z,y)

m(B,z|y) = m(z|y) (B |zy)
——— —_————
truncated multivariate normal normal

» Logistic: a couple of possibilities

(A) 7z A [By) = =m(z|B,y) 7(A]|B,2), then 7(B|z,A)
————

truncated ind logistic normal x KS2 normal

(B) m(B.z| Ay) = w(z|Ay) w(B|zA), then w(A]B,2)
——

truncated mv normal normal normal x KS2
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Logistic performance: absolute

Time Distance ESS
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Model uncertainty

Suppose we have our set of p covariates but don’t know which to
include in our logistic regression model.

An approach: yet more latent variables

=1

1 if §; in model
FYJ: 7"'7p

0 if 5 not in model "

Now, we condition 3 on = so z; = x;3 + ¢; becomes

p
Zi = XiyB + € = g Xijv B + €
Jj=1

Then: estimate m(y; = 1| y) (among other interesting quantities)
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Updating scheme

Posterior:

(8,7, z, A ly) < p(y | 2)p(z | B, v, AN)p(N)7(B | v)7 ()

Update sets of coefficients with blocked Gibbs iterations:
(1) 7(v.B 1z Ay) xp(z|B,v, ) (B |~)n(v) using M-H
N —— N —
N(xB~,A~) N(by,v~)

(2) m(z, A [v,B,y) =7(z| B,v,y) (A ] B,7,2)

truncated logistic  normalx KS?

Note that we update (3,~) simultaneously and jump dimensions —
much harder to do with iterative sampling
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Metropolis-Hastings step
Target density:

(Y, 812z, Ay) x (B2, y)7(7)
—_—
N(B’va"/)

with B, V. determined by v,z, A, b, v, x

(i) Given current (v, 3,2z, \), propose from

QMY B [7.8)= a(v" [v) 7(B"[z~" Ay)
—_——
proposal density N(Bx,Vx)

(ii) Accept (v*,3*) as update with probability

o f Ve 2 exp(0.5B].V_ !B, )m(v")a(v | v*)
VL Y2 v |12 exp(O.SBJV;lBV)W('y)q(’y* | v)

(iii) Otherwise stay in current state of (v, 3,2z, A)
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From dichotomous to polytomous

Generalize the logistic regression model for classification problems
by allowing unordered outcomes {1,2,..., Q} instead of {0,1}:

i~ I\/Iultinomial(ﬁ,-l, R ,9,’Q)
exp(xi3))

SR1 exp(xiBk)

Bq = 0 for identifiability

0 =
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Polytomous sampling

Conditional likelihood has form of binary logistic regression:

lyi=J]
exp(xiB; — Cj) (1 i)
(BJ ’ ya —J X H 1 +eXp(X,ﬁJ I) (l 77u)
Mij
Gj = Z log exp(x;Bk)

k#j

so in Bayesian framework bringing in priors and auxiliary variables,

we can Gibbs over each of the @ — 1 classes and treat each using
either of the logistic regression sampling schemes

23



To do/lingering concerns

v

More simulations: additional datasets, iterative updates for
logistic, model uncertainty, polytomous regression

Numerical and speed issues with rejection sampler for
conditional distribution of A in logistic models

Deriving acceptance rate for M-H steps under model
uncertainty

Scope issue: how much time/effort to devote to discussing
later work? (e.g. Pdlya-Gamma model by Polson, Scott, and
Windle, or refinements by Frithwirth-Schnatter, Friihwirth,
Rue)
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