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Holmes & Held set out to take regression models for categorical
outcomes and ...
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Binary data setup

Classical framework with n binary responses y; and covariates x;:

y; ~ Bernoulli(p;)

pi=g *(m), g ' :R—(0,1)
77i=Xi57 I = 1,...,”

X,':( Xji1 ... X,'p )

/6:(51 5/3 )T

Put a prior on the unknown coefficients:

B~ m(B)

Inferential goal: compute posterior (3 | y) x p(y | B)7(8)



Why are binary regression models hard to Bayesify?

» No conjugate priors — will need to use MCMC sampling
» (Max. likelihood needs iterative methods, asymptotics)

» Previous approaches involve sampling from an approximation
to the posterior, need tuning, or otherwise rely on
data-dependent accept-reject steps (e.g. Gamerman, 1997;
Chen & Dey, 1998)

» Adaptive-rejection sampling (Dellaportas & Smith, 1993) only
updates individual coefficients, resulting in poor mixing when
coefficients are correlated

Wishlist for automatic and efficient Bayesian inference:
» MCMC samples from exact posterior distribution
» No tuning of proposal distributions or low accept-reject rates

» Reasonable mixing even with correlated parameters



Intro to Gibbs sampling
Setup: we don’t know posterior distribution 7(3 | y), but do know
each conditional posterior 7(8; | B—;,y).

Gibbs sampling iterates over conditional posteriors to produce a
sample from a Markov chain with stationary distribution 7(3 | y):

1) Initialize B(®) = (5%0), cey ;(>0))
) Draw Bil) ~ (| ,3(01)7 y)
) Draw 5&1) (B2 ’5(1) (0{)1 2},y)
4) . Draw 6,; ~ W(Bp | B( P’ y)
)

Combine Gibbs steps into blocks: e.g. if distribution of
(51, B2 | ﬁ_{m},y) is available, can use in place of the individual
conditionals in (2) and (3).



Probit regression

A& C auxiliary variable approach: introduce unobserved auxiliary
variables z; and re-write the probit model as

Yi = 1iz>0]

zi= X3 + €
ei ~ N(0,1)
B~ N(b,v)

Equivalent to probit model with y; ~ Bernoulli (p; = ®(x;3)):

pi=P(z>0|B)=PxiB+e>0]0)
=1- (D(—X,',@) = q)(X,',B)



Probit the A&C way: iterative Gibbs steps

From joint posterior, obtain nice block conditional distributions of
the parameters to iterate through in Gibbs steps:

m(8,z|y) o p(y | z)p(z | B)7(B), so:

(1) 7(B]zy)ocp(z|B)n(B) = =(B)II}-1 p(zi | B)
—~— ——

N(b,v) N(x;3,1)
= multivariate normal

(2) 7(z| B,y) < p(y | 2)p(z | B) = [I_1 p(yi | z))p(zi | B)

=[] (esoly=y + L<olyi=o) &(z — xiB)

i=1

(2| B,yi)=truncated normal

= product of truncated univariate normals
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Smarter Gibbs sampling for probit?

H&H improve mixing by updating (3, z) jointly: simulate from
n(z | y), then from 7(8 | z,y). With 7(8) normal:

m(B,z|y) =7(B | z,y)n(z|y) implies

(known form

normal

)
m(z | y) ~ truncated multivariate normal

Truncated multivariate normal very hard to sample from directly,
but univariate conditionals can be Gibbsed:

N (m;, V,') 1[Zi>0] if yi = 1

zi|z_j,y) =
e | y) {N(mi7vi)1[2/§0] ify;=0

where m; and v; are leave-one-out functions of z_;, data, and prior
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Probit sampler comparison

Iterative updates from A&C:
> lIterate between block Gibbs updates 7(z | B,y), 7(3 | z,y)
» 7(z| B,y) ~ nindependent truncated normals with variance 1

» Blocking, independence need just two matrix updates per
cycle, should run quickly — implementation in H&H paper
appears not to have exploited this for w(z | 3,y)

Joint updates from H&H:
> lterate through n univariate Gibbs updates 7(z; | z_;,y), then
one block Gibbs update 7(3 | z,y)
» 7(zj | z_j,y) ~ truncated normal with variance v; > 1

» Can't do the z's all at once, need n + 1 matrix calculations
per cycle — but maybe bigger variance can offset slowness
through better mixing?
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Efficient Bayesian inference
How might we see if a MCMC sampling algorithm is efficient?

(1) Time elapsed to run M iterations

(2) Effective sample size (ESS) for a single parameter:

M
1423702 p(k)

where p(k) = monotone sample autocorrelation at lag k (Kass
et al, 1998)

(3) Average update distance: measure mixing with

M-
Z 18+ — g0
=1

ESS =

Testing procedure: compute these metrics on each of 10 runs of
M =10,000 iterations per run (discard 1,000 burn-in)
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Test data

H&H analyze several stock datasets with binary outcomes:

» Pima Indian data (n = 532, p = 8): outcome is diabetes;
covariates include BMI, age, number of pregnancies

» Australian credit data (n = 690, p = 14): outcome is credit
approval; 14 generic covariates

» Heart disease data (n = 270, p = 13): outcome is heart
disease; covariates include age, sex, blood pressure, chest pain
type

» German credit data (n = 1000, p = 24): outcome is good
vs. bad credit risk; covariates include checking account status,
purpose of loan, gender and marital status
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Probit performance: median values in 10 runs
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Probit performance: relative

Standardize for run time: ¢

ESS/second, joint and Dist./second, joint

SS/second, iterative

Dist./second, iterative
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0.02-

0.01-

0.00-

Pir:na Aus. l(.‘.re::litHel.'ar‘l Ger. E:redit'

Pir:na Aus. bredit Helart Ger. éredit
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From probit to logit

Extend auxiliary variables to logistic regression with another level
to model differing variances of the error terms:

Yi = Liz>0]

zi=xiB +¢€;

ei ~ N(0, \;)

A= (2¢7)?, ;i ~ KS (Kolmogorov-Smirnov)
B~ N(b,v)

Equivalent to logit model with y; ~ Bernoulli (p; = expit(x;3))
because ¢; has a logistic distribution (Andrews & Mallows, 1974)
and CDF of logistic is expit function:

pi = P(zi >0 8) = Ple; > —x;3 | B)
=1 — expit(—x;3) = expit(x;3)
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Logistic Gibbs

In similar fashion to probit model, simulate from posterior
conditionals:

m(B,z,A|y) x p(y|z) p(z]|B,A) p(A) 7(B)
—— ————

truncators indep. normal KS2 normal

(1) 7(B12.Ay) x p(z | B,A)x(8) = normal
(2) m(z | B, A, y) xp(y|z)p(z | B,A) = ind. truncated normals
(3) T(A | B,2,y) x p(z | B,A)P(A) = ind. normal x KS?

Last conditional distribution is non-standard, but can be simulated
using rejection sampling with Generalized Inverse Gaussian
proposals and alternating series representation ( “squeezing”)
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Logistic sampler comparison
Iterative updates (not analyzed in paper):
» lIterate block Gibbs updates 7(83 | z, \,y), 7(z | B, A,y),
(A |B.z,y)
» Variance of m(z | 3,A,y) is A\; with expected value 72/3

Joint updating scheme (z, \):
> lterate block Gibbs updates
m(z,A|B,y) = w(z|B,y) m(A|B,z), then w(B|z,A)
~~ N———r

/

trunc ind logistic normalx KS2 normal

» Variance of 7(z | B,y) is 72/3 - little gain by marginalizing?

Joint updating scheme (z, 3):
> lterate Gibbs updates
m(z,B|Ay)= w(z|Ay) m(B|z,A), then (A ]S, 2)
—_——
trunc mv normal normal normal x KS?2
» Note that 7(z | A, y) will require Gibbsing through
m(zi | z—i, A,y), but variance is > \;
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Logit performance: median values in 10 runs
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Logit performance: relative

ESS/second, joint and Dist./second, joint

Standardize for run time: ESS /secon
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Concluding thoughts

» Latent variables can induce convenient conditional
distributions to make MCMC sampling tractable for Bayesian
models of binary data

» In these cases, all conditionals can be sampled from without
Metropolis-Hastings

» Joint updating to increase variance in Gibbs sampling might
make sense theoretically. . .

» ...but only the scheme updating (z, A) jointly in logistic
regression was competitive with blocked iterative updates

» Don't replace independent truncated univariate distributions
with a truncated multivariate normal!

» Auxiliary variable technique H&H introduced for logistic
regression extends straightforwardly to Bayesian model
uncertainty situations, polytomous outcomes
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