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Covariance Estimation

@ Suppose we have measured p covariates on n subjects. For example:

e The expression levels of p genes on n people;
e The relative abundances of p species at n locations.

@ We want to know the covariance matrix between those p covariates.

o To determine the gene / gene or species / species interaction.
e Specifically, we may want to know whether two covariates are
marginally independent (i.e. covariance = 0).
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Introduction

@ Suppose X1, ..., X, ~iig Np(0,X). We want to estimate X.
@ Relatively easy when n >> p. Use MLE.

I(Z) = —% log(2r) — g log det(3) — gtr(E_ls),

where § = 1577 XX
@ When p > n, things become much harder.

@ Heuristically, we have np values in the dataset, but we have w

parameters to estimate.
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A Simple Simulation Study

o Let Xy,..., X, ~iig No(0, ). (n, p) € {(1000,50), (50,1000)}.

1 =
Cov(Xi,X;) =13 05 :i#j,ije{l, ..., 5}
0 . otherwise

e Estimate ¥ using MLE. Average over 1000 repetitions.
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Simulation: n = 1000, p = 50 (Bias)

column

40

30

20

row

30

40

r 0.003

r 0.002

r 0.001

r 0.000

- -0.001

F -0.002

r -0.003

r- -0.004

4/15



Simulation: n = 1000, p = 50 (Standard Deviation)
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Simulation: n = 50, p =
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Simulation: n = 50, p = 1000 (Standard Deviation)
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2 Problems

@ When p > n, the estimates are highly variable.

@ Sometimes we care about the independence of the covariates, namely,
whether Cov(X;, X;) = 0.
e With MLE, Pr(Cov(X;, X;) = 0) = 0.
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The Lasso (Tibshirani, 1996)

@ Suppose /(0) is the objective function to be maximized.

e [ is the log-likelihood function, negative of the squared error loss, etc.
e 0 is the parameter of interest, in this case, X.

@ Lasso solves the following constrained optimization problem:

0 =arg m;x/(@) subject to ||@|]; = Z 10;] <t

for some " well-chosen” t.
o If t is large, then the constraint is loose, 6 is close to éMLE.

@ If t is small, then the constraint is strict, 0 is close to 0.
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Lasso Encourages Sparsity

TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58, 267-88.
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Sparse Estimation of a Covariance Matrix

@ Impose a Lasso constraint on the ML problem.
3= arg mzin(log det(X) + tr(=71S))

subject to ||P x X||; = ZZ PTyl <t
i

where " %" is the component-wise multiplication.

@ We can also rewrite the problem in Lagrangian form
$=arg min(log det(X) + tr(X718) + A||P * 3||1)

where X\ is the "well-chosen” tuning parameter. Larger A corresponds
to smaller t, i.e. stronger penalty.

@ This problem is non-convex.
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Choose the Tuning Parameter A

e (10-fold) Cross-Validation:
@ For each candidate A, Randomly and evenly separate those n subjects
into 10 groups: Aj, ..., As.
@ Forice{l,..10}:
@ Calculate ZA],A using the data without A;. Calculate S; = %Z, X,-TX,-
using A;.
@ Get the estimated likelihood / = — log det(3}) — tr((2})71S))
© Get the average estimated likelihood /* = 2 3. /A,
@ Choose )\ that generates the smallest average estimated likelihood /*.

10-fold cross-validation
| Total data |
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Earlier Work

e Chaudhuri, Drton and Richardson (2007) consider estimating a
covariance matrix given that some pre-specifed entries in 3 are 0.

e Rothman, Levina and Zhu (2009) consider thresholding the sample
covariance matrix to get a sparse estimation.
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Marginal vs. Conditional

@ In multivariate Gaussian, X; and X; are marginally independent if
Y;=0.
@ In multivariate Gaussian, X; and X; are conditionally independent if
-1
r; =0
@ The proposed method can only be used to infer the marginal
independence.

e For conditional associations, we use " graphical Lasso”. (Yuan and Lin
(2007), Friedman, Hastie, and Tibshirani (2007)).

o Replace ||P * X||; in the penalty with || X71];.
e Convex problem — easier to solve.
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@ How to solve the optimization problem. (non-convex problem — hard)
@ Some simulation results (if | am lucky)

e Some problems (if | am not)
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