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Covariance Estimation

Suppose we have measured p covariates on n subjects. For example:

The expression levels of p genes on n people;
The relative abundances of p species at n locations.

We want to know the covariance matrix between those p covariates.

To determine the gene / gene or species / species interaction.
Specifically, we may want to know whether two covariates are
marginally independent (i.e. covariance = 0).
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Introduction

Suppose X1, ...,Xn ∼iid Np(0,Σ). We want to estimate Σ.

Relatively easy when n >> p. Use MLE.

l(Σ) = −np

2
log(2π)− n

2
log det(Σ)− n

2
tr(Σ−1S),

where S = 1
n

∑n
i=1 XiXT

i .

When p > n, things become much harder.

Heuristically, we have np values in the dataset, but we have p(p+1)
2

parameters to estimate.
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A Simple Simulation Study

Let X1, ...,Xn ∼iid Np(0,Σ). (n, p) ∈ {(1000, 50), (50, 1000)}.

Cov(Xi ,Xj) =


1 : i = j
0.5 : i 6= j , i , j ∈ {1, ..., p2}
0 : otherwise

Estimate Σ using MLE. Average over 1000 repetitions.
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Simulation: n = 1000, p = 50 (Bias)
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Simulation: n = 1000, p = 50 (Standard Deviation)
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Simulation: n = 50, p = 1000 (Bias)

6/15



Simulation: n = 50, p = 1000 (Standard Deviation)
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2 Problems

When p > n, the estimates are highly variable.

Sometimes we care about the independence of the covariates, namely,
whether Cov(Xi ,Xj) = 0.

With MLE, Pr(Cov(Xi ,Xj) = 0) = 0.
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The Lasso (Tibshirani, 1996)

Suppose l(θ) is the objective function to be maximized.

l is the log-likelihood function, negative of the squared error loss, etc.
θ is the parameter of interest, in this case, Σ.

Lasso solves the following constrained optimization problem:

θ̂ = arg max
θ

l(θ) subject to ‖θ‖1 =
∑
i

|θi | ≤ t

for some ”well-chosen” t.

If t is large, then the constraint is loose, θ̂ is close to θ̂MLE .

If t is small, then the constraint is strict, θ̂ is close to 0.
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Lasso Encourages Sparsity

TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58, 267-88.
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Sparse Estimation of a Covariance Matrix

Impose a Lasso constraint on the ML problem.

Σ̂ = arg min
Σ

(log det(Σ) + tr(Σ−1S))

subject to ‖P ∗Σ‖1 =
∑
i

∑
j

|PijΣij | ≤ t

where ”∗” is the component-wise multiplication.

We can also rewrite the problem in Lagrangian form

Σ̂ = arg min
Σ

(log det(Σ) + tr(Σ−1S) + λ‖P ∗Σ‖1)

where λ is the ”well-chosen” tuning parameter. Larger λ corresponds
to smaller t, i.e. stronger penalty.

This problem is non-convex.
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Choose the Tuning Parameter λ

(10-fold) Cross-Validation:
1 For each candidate λ, Randomly and evenly separate those n subjects

into 10 groups: A1, ...,A5.
2 For i ∈ {1, ..., 10}:

1 Calculate Σ̂λ
i using the data without Ai . Calculate Si =

1
n

∑
i X

T
i Xi

using Ai .
2 Get the estimated likelihood lλi = − log det(Σ̂λ

i )− tr((Σ̂λ
i )

−1Si )

3 Get the average estimated likelihood lλ = 1
n

∑
i l

λ
i .

4 Choose λ that generates the smallest average estimated likelihood lλ.
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Earlier Work

Chaudhuri, Drton and Richardson (2007) consider estimating a
covariance matrix given that some pre-specifed entries in Σ are 0.

Rothman, Levina and Zhu (2009) consider thresholding the sample
covariance matrix to get a sparse estimation.
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Marginal vs. Conditional

In multivariate Gaussian, Xi and Xj are marginally independent if
Σij = 0.

In multivariate Gaussian, Xi and Xj are conditionally independent if
Σ−1
ij = 0.

The proposed method can only be used to infer the marginal
independence.

For conditional associations, we use ”graphical Lasso”. (Yuan and Lin
(2007), Friedman, Hastie, and Tibshirani (2007)).

Replace ‖P ∗Σ‖1 in the penalty with ‖Σ−1‖1.
Convex problem – easier to solve.
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Next Time

How to solve the optimization problem. (non-convex problem – hard)

Some simulation results (if I am lucky)

Some problems (if I am not)
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