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Last Time

@ Goal: Simultaneously estimate

e the location of zero entries in a covariance matrix;
e the value of nonzero entries in a covariance matrix.
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@ Goal: Simultaneously estimate

e the location of zero entries in a covariance matrix;
e the value of nonzero entries in a covariance matrix.

e Method: Maximize penalized likelihood with Lasso (¢1) penalty.

3 =arg mzi:n(log det(2) + tr(X718) + AP + X||1)

e S: sample covariance matrix;
e \: tuning parameter;
e P penalty matrix of our choice.
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@ Goal: Simultaneously estimate

e the location of zero entries in a covariance matrix;
e the value of nonzero entries in a covariance matrix.

e Method: Maximize penalized likelihood with Lasso (¢1) penalty.
3 =arg mzi:n(log det(2) + tr(X718) + AP + X||1)
e S: sample covariance matrix;

e \: tuning parameter;
e P penalty matrix of our choice.

o Difficulty: The optimization problem is not convex
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@ Method to solve this non-convex optimization problem

@ Some simulation results
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Majorize-Minimization (MM) Algorithm  (uane. 2004, Hunter ana L. 2005)
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Majorize-Minimization (MM) Algorithm  (uane. 2004, Hunter ana L. 2005)
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Majorize-Minimization (MM) Algorithm  (uane. 2004, Hunter ana L. 2005)
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Majorize-Minimization (MM) Algorithm  (uane. 2004, Hunter ana L. 2005)
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Majorize-Minimization (MM) Algorithm  (uane. 2004, Hunter ana L. 2005)
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Majorize-Minimization (MM) Algorithm  (uane. 2004, Hunter ana L. 2005)
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Majorize-Minimization (MM) Algorithm  (uane. 2004, Hunter ana L. 2005)
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Third Guess
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Majorize-Minimization (MM) Algorithm  (uane. 2004, Hunter ana L. 2005)

o
N

2.0

1.5

1.0

0.5
Il

0.0

Solution
T

2 3 4 5

X

11/33



Majorize-Minimization (MM) Algorithm  (uane. 2004, Hunter ana L. 2005)

@ Suppose g(x) is the (non-convex) function we want to minimize.

@ Pick an initial guess point xg.

@ Find a convex surrogate function f(x) such that:
e f(x) > g(x) for any x;
o f(x0) = &g(x0)-

© Update of xg = arg min, f(x).

@ Repeat 2-3 until convergence.
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Things to Consider

@ How to find the convex surrogate function.
e Difference of Convex Functions (DC) Programming (An and Tao, 2005)
@ How to minimize the convex surrogate function.

e Generalized Gradient Descent (Beck and Teboulle, 2009)
e Alternating Direction Method of Multipliers (ADMM) (Boyd, 2011)
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Difference of Convex Functions Programming an ana 7o, 2005)

@ Suppose we want to minimize g(x) = a(x) — b(x).
e a(x) and b(x) are convex functions.
@ Suppose b] (x) is the tangent line of b(x) at xo.

o b (x0) = b(x0);
o b (x) < b(x) for all x.
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Difference of Convex Functions Programming an ana 7o, 2005)

@ Suppose we want to minimize g(x) = a(x) — b(x).
e a(x) and b(x) are convex functions.
Suppose bl (x) is the tangent line of b(x) at xo.
o b (x0) = b(x0);
o b (x) < b(x) for all x.
f(x) = a(x) — b}, (x) is the convex surrogate function.

e f(x) is convex;
° f(x0) = alx0) — b, (x0) = alx0) — b(x0) = g(x0);
o f(x) = a(x) — b, (x) > a(x) — b(x) = g(x) for all x.

@ The convex surrogate function in this case:

f(X) = log(det(o)) + tr(Zy'E) — p+ tr(Z71S) + A\|P + Z||;

14/33



What's Wrong with the Newton-Raphson Method?

@ The convex surrogate function is not differentiable.

@ There is an implicit constraint that X is positive semi-definite.
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Simulation Setup

@ Three methods to consider:
e Soft-thresholded sample covariance matrix. (Rothman et al., 2009)

o Off-diagonal entries are shrunken towards 0 by an additive factor c,
until they reach 0.

e Proposed method with the weight matrix P;; = 1 for i # j, P;; =0
e Equal penalties for all off-diagonal entries.
o Proposed method with the weight matrix Pj;; = S,-j_1 fori #j, Pi =0

e Stronger penalties for entries with small sample covariances.
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Simulation Setup

@ Three methods to consider:
e Soft-thresholded sample covariance matrix. (Rothman et al., 2009)

o Off-diagonal entries are shrunken towards 0 by an additive factor c,
until they reach 0.

e Proposed method with the weight matrix P;; = 1 for i # j, P;; =0
e Equal penalties for all off-diagonal entries.
o Proposed method with the weight matrix Pj;; = S,-j_1 fori #j, Pi =0

e Stronger penalties for entries with small sample covariances.
e 5 different structures of X.
e n =200, p=100.
@ 10 repetitions (this is not a typo!)
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o Intel 4" generation Core i7 processor (2013), 2.0GHz.

e Parallel computing using 2 cores.
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Intel 4" generation Core i7 processor (2013), 2.0GHz.
Parallel computing using 2 cores.

50 candidate shrinkage/tuning parameters.

Use 10-fold CV to choose the shrinkage/tuning parameters.

17/33



Intel 4t" generation Core i7 processor (2013), 2.0GHz.

Parallel computing using 2 cores.

50 candidate shrinkage/tuning parameters.

Use 10-fold CV to choose the shrinkage/tuning parameters.

Time for 1 model (500 model fits):

Method Runtime
Thresholding of Sample Covariance 2 sec
Maximum ¢1-Penalized Likelihood 90 min

The whole simulation will take around 150 hours.
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Cliques Covariance Structure
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Cliques Covariance Structure
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Cliques Covariance Structure
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Cliques Covariance Structure

Root Mean Squared Error
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Cliques Covariance Structure

Entropy Loss
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Hubs Covariance Structure
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Hubs Covariance Structure
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Hubs Covariance Structure
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Hubs Covariance Structure

Root Mean Squared Error
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Hubs Covariance Structure

Entropy Loss
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MA(1) Covariance Structure
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MA(1) Covariance Structure
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MA(1) Covariance Structure
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MA(1) Covariance Structure

Root Mean Squared Error
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MA(1) Covariance Structure

Entropy Loss
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Majorize-Minimization (MM) Algorithm
Difference of Convex Functions (DC) Programming
The runtime of the proposed method is discouraging

The method may work well when the covariance matrix is very sparse
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