Sparse Estimation of a Covariance Matrix (2011)

Jacob Bien Robert Tibshirani

May 13, 2014 Presented by Sen Zhao

Last Time

- Goal: Simultaneously estimate
 - the location of zero entries in a covariance matrix;
 - the value of nonzero entries in a covariance matrix.

Last Time

- Goal: Simultaneously estimate
 - the location of zero entries in a covariance matrix;
 - the value of nonzero entries in a covariance matrix.
- Method: Maximize penalized likelihood with Lasso (ℓ_1) penalty.

$$\hat{\boldsymbol{\Sigma}} = \mathop{\textit{arg}}\limits_{\boldsymbol{\Sigma}} \min(\log \det(\boldsymbol{\Sigma}) + \mathop{\textit{tr}}(\boldsymbol{\Sigma}^{-1}\boldsymbol{S}) + \lambda \|\boldsymbol{P} * \boldsymbol{\Sigma}\|_1)$$

- S: sample covariance matrix;
- λ : tuning parameter;
- P penalty matrix of our choice.

Last Time

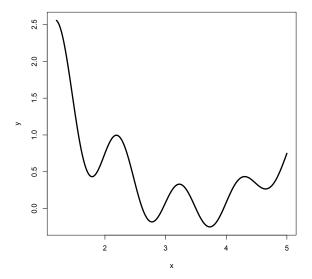
- Goal: Simultaneously estimate
 - the location of zero entries in a covariance matrix;
 - the value of nonzero entries in a covariance matrix.
- Method: Maximize penalized likelihood with Lasso (ℓ_1) penalty.

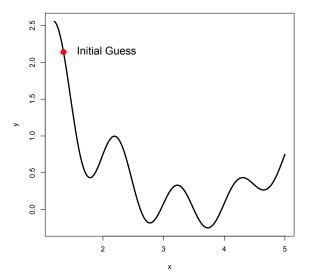
$$\hat{\boldsymbol{\Sigma}} = \mathop{\textit{arg}}_{\boldsymbol{\Sigma}} \min(\log \det(\boldsymbol{\Sigma}) + \mathop{\textit{tr}}(\boldsymbol{\Sigma}^{-1}\boldsymbol{S}) + \lambda \|\boldsymbol{P} * \boldsymbol{\Sigma}\|_1)$$

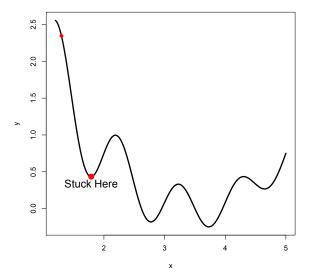
- S: sample covariance matrix;
- λ : tuning parameter;
- P penalty matrix of our choice.
- Difficulty: The optimization problem is not convex

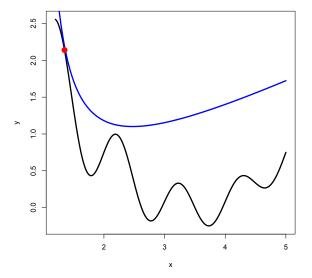
This Time

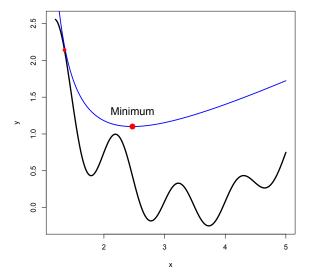
- Method to solve this non-convex optimization problem
- Some simulation results

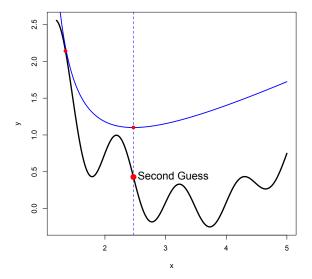


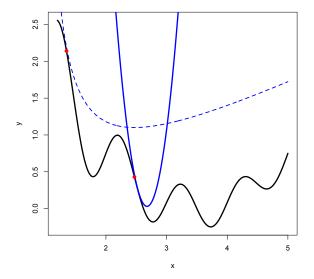


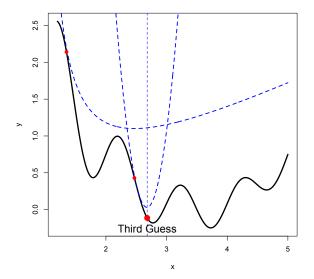


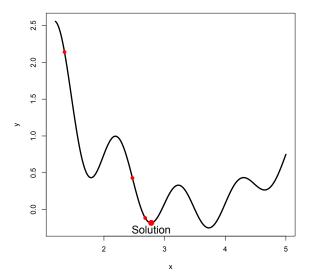












- Suppose g(x) is the (non-convex) function we want to minimize.
- Pick an initial guess point x_0 .
- **2** Find a convex surrogate function f(x) such that:
 - $f(x) \ge g(x)$ for any x;
 - $f(x_0) = g(x_0)$.
- **3** Update of $x_0 = arg \min_x f(x)$.
- Repeat 2-3 until convergence.

Things to Consider

- How to find the convex surrogate function.
 - Difference of Convex Functions (DC) Programming (An and Tao, 2005)
- How to minimize the convex surrogate function.
 - Generalized Gradient Descent (Beck and Teboulle, 2009)
 - Alternating Direction Method of Multipliers (ADMM) (Boyd, 2011)

Difference of Convex Functions Programming (An and Tao, 2005)

- Suppose we want to minimize g(x) = a(x) b(x).
 - a(x) and b(x) are convex functions.
- Suppose $b'_{x_0}(x)$ is the tangent line of b(x) at x_0 .
 - $b'_{x_0}(x_0) = b(x_0)$;
 - $b'_{x_0}(x) \leq b(x)$ for all x.

Difference of Convex Functions Programming (An and Tao, 2005)

- Suppose we want to minimize g(x) = a(x) b(x).
 - a(x) and b(x) are convex functions.
- Suppose $b'_{x_0}(x)$ is the tangent line of b(x) at x_0 .
 - $b'_{x_0}(x_0) = b(x_0)$;
 - $b'_{x_0}(x) \leq b(x)$ for all x.
- $f(x) = a(x) b'_{x_0}(x)$ is the convex surrogate function.
 - f(x) is convex;
 - $f(x_0) = a(x_0) b'_{x_0}(x_0) = a(x_0) b(x_0) = g(x_0);$
 - $f(x) = a(x) b'_{x_0}(x) \ge a(x) b(x) = g(x)$ for all x.
- The convex surrogate function in this case:

$$f(\boldsymbol{\Sigma}) = \log(\det(\boldsymbol{\Sigma}_0)) + tr(\boldsymbol{\Sigma}_0^{-1}\boldsymbol{\Sigma}) - p + tr(\boldsymbol{\Sigma}^{-1}\boldsymbol{S}) + \lambda \|\boldsymbol{P} * \boldsymbol{\Sigma}\|_1$$

What's Wrong with the Newton-Raphson Method?

- The convex surrogate function is not differentiable.
- ullet There is an implicit constraint that Σ is positive semi-definite.

Simulation Setup

- Three methods to consider:
 - Soft-thresholded sample covariance matrix. (Rothman et al., 2009)
 - Off-diagonal entries are shrunken towards 0 by an additive factor c, until they reach 0.
 - Proposed method with the weight matrix $P_{ij} = 1$ for $i \neq j$, $P_{ii} = 0$
 - Equal penalties for all off-diagonal entries.
 - Proposed method with the weight matrix ${m P}_{ij} = {m S}_{ij}^{-1}$ for i
 eq j, ${m P}_{ii} = 0$
 - Stronger penalties for entries with small sample covariances.

Simulation Setup

- Three methods to consider:
 - Soft-thresholded sample covariance matrix. (Rothman et al., 2009)
 - Off-diagonal entries are shrunken towards 0 by an additive factor c, until they reach 0.
 - Proposed method with the weight matrix $P_{ij} = 1$ for $i \neq j$, $P_{ii} = 0$
 - Equal penalties for all off-diagonal entries.
 - Proposed method with the weight matrix ${m P}_{ij}={m S}_{ij}^{-1}$ for i
 eq j, ${m P}_{ii}=0$
 - Stronger penalties for entries with small sample covariances.
- 5 different structures of Σ .
- n = 200, p = 100.
- 10 repetitions (this is not a typo!)

Runtime

- Intel 4th generation Core i7 processor (2013), 2.0GHz.
- Parallel computing using 2 cores.

Runtime

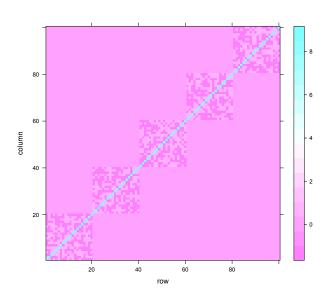
- Intel 4th generation Core i7 processor (2013), 2.0GHz.
- Parallel computing using 2 cores.
- 50 candidate shrinkage/tuning parameters.
- Use 10-fold CV to choose the shrinkage/tuning parameters.

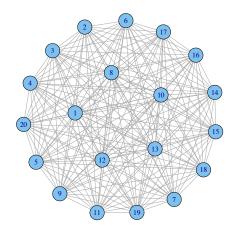
Runtime

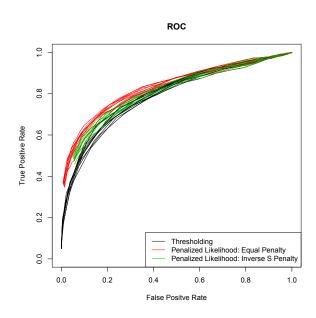
- Intel 4th generation Core i7 processor (2013), 2.0GHz.
- Parallel computing using 2 cores.
- 50 candidate shrinkage/tuning parameters.
- Use 10-fold CV to choose the shrinkage/tuning parameters.
- Time for 1 model (500 model fits):

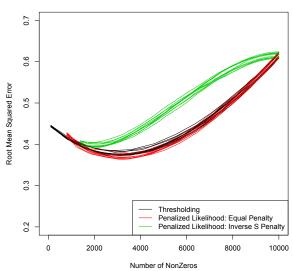
Method	Runtime
Thresholding of Sample Covariance	2 sec
Maximum ℓ_1 -Penalized Likelihood	90 min

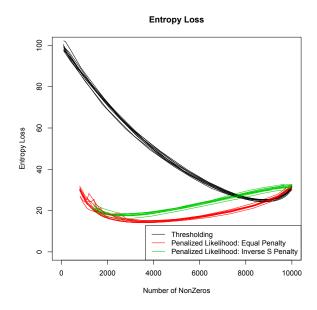
• The whole simulation will take around 150 hours.

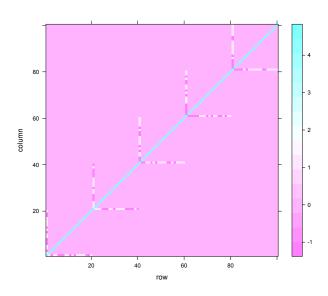


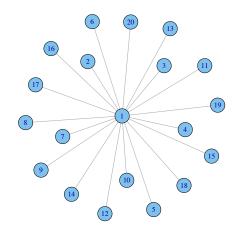


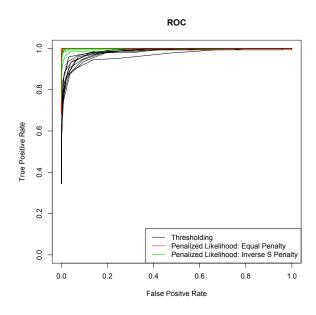


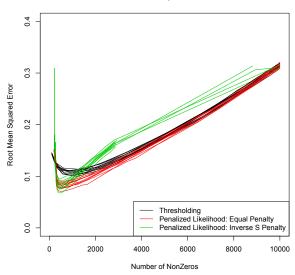


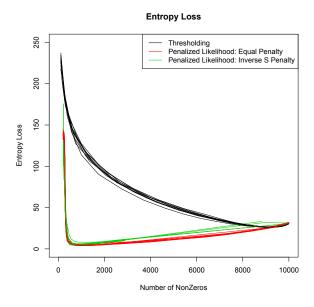


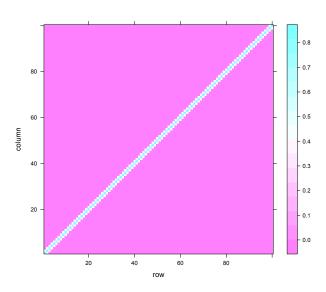


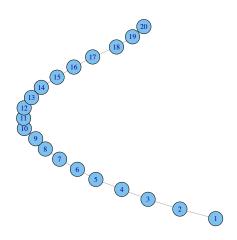


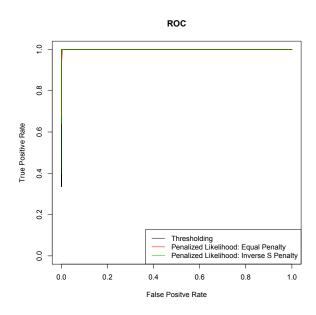


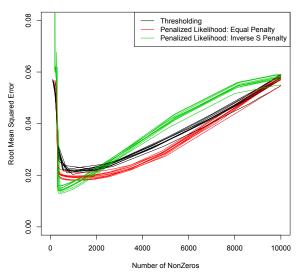


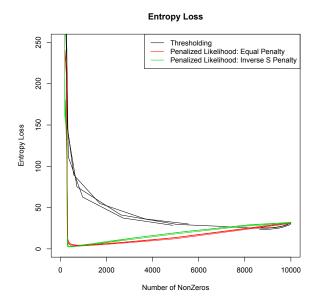












Summary

- Majorize-Minimization (MM) Algorithm
- Difference of Convex Functions (DC) Programming
- The runtime of the proposed method is discouraging
- The method may work well when the covariance matrix is very sparse