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Last Time

Goal: Simultaneously estimate

the location of zero entries in a covariance matrix;
the value of nonzero entries in a covariance matrix.

Method: Maximize penalized likelihood with Lasso (`1) penalty.

Σ̂ = arg min
Σ

(log det(Σ) + tr(Σ−1S) + λ‖P ∗Σ‖1)

S : sample covariance matrix;
λ: tuning parameter;
P penalty matrix of our choice.

Difficulty: The optimization problem is not convex
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This Time

Method to solve this non-convex optimization problem

Some simulation results
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Majorize-Minimization (MM) Algorithm (Lange, 2004, Hunter and Li, 2005)
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Majorize-Minimization (MM) Algorithm (Lange, 2004, Hunter and Li, 2005)
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Majorize-Minimization (MM) Algorithm (Lange, 2004, Hunter and Li, 2005)
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Majorize-Minimization (MM) Algorithm (Lange, 2004, Hunter and Li, 2005)
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Majorize-Minimization (MM) Algorithm (Lange, 2004, Hunter and Li, 2005)
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Majorize-Minimization (MM) Algorithm (Lange, 2004, Hunter and Li, 2005)
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Majorize-Minimization (MM) Algorithm (Lange, 2004, Hunter and Li, 2005)
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Majorize-Minimization (MM) Algorithm (Lange, 2004, Hunter and Li, 2005)
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Majorize-Minimization (MM) Algorithm (Lange, 2004, Hunter and Li, 2005)

2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

x

y

Solution

11/33



Majorize-Minimization (MM) Algorithm (Lange, 2004, Hunter and Li, 2005)

Suppose g(x) is the (non-convex) function we want to minimize.

1 Pick an initial guess point x0.
2 Find a convex surrogate function f (x) such that:

f (x) ≥ g(x) for any x ;
f (x0) = g(x0).

3 Update of x0 = arg minx f (x).

4 Repeat 2-3 until convergence.
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Things to Consider

How to find the convex surrogate function.

Difference of Convex Functions (DC) Programming (An and Tao, 2005)

How to minimize the convex surrogate function.

Generalized Gradient Descent (Beck and Teboulle, 2009)
Alternating Direction Method of Multipliers (ADMM) (Boyd, 2011)
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Difference of Convex Functions Programming (An and Tao, 2005)

Suppose we want to minimize g(x) = a(x)− b(x).

a(x) and b(x) are convex functions.

Suppose b′x0(x) is the tangent line of b(x) at x0.

b′x0(x0) = b(x0);
b′x0(x) ≤ b(x) for all x .

f (x) = a(x)− b′x0(x) is the convex surrogate function.

f (x) is convex;
f (x0) = a(x0)− b′x0(x0) = a(x0)− b(x0) = g(x0);
f (x) = a(x)− b′x0(x) ≥ a(x)− b(x) = g(x) for all x .

The convex surrogate function in this case:

f (Σ) = log(det(Σ0)) + tr(Σ−10 Σ)− p + tr(Σ−1S) + λ‖P ∗Σ‖1
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What’s Wrong with the Newton-Raphson Method?

The convex surrogate function is not differentiable.

There is an implicit constraint that Σ is positive semi-definite.
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Simulation Setup

Three methods to consider:
Soft-thresholded sample covariance matrix. (Rothman et al., 2009)

Off-diagonal entries are shrunken towards 0 by an additive factor c,
until they reach 0.

Proposed method with the weight matrix Pij = 1 for i 6= j , Pii = 0

Equal penalties for all off-diagonal entries.

Proposed method with the weight matrix Pij = S−1ij for i 6= j , Pii = 0

Stronger penalties for entries with small sample covariances.

5 different structures of Σ.

n = 200, p = 100.

10 repetitions (this is not a typo!)
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Runtime

Intel 4th generation Core i7 processor (2013), 2.0GHz.

Parallel computing using 2 cores.

50 candidate shrinkage/tuning parameters.

Use 10-fold CV to choose the shrinkage/tuning parameters.

Time for 1 model (500 model fits):

Method Runtime

Thresholding of Sample Covariance 2 sec
Maximum `1-Penalized Likelihood 90 min

The whole simulation will take around 150 hours.
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Cliques Covariance Structure
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Cliques Covariance Structure
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Cliques Covariance Structure
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Cliques Covariance Structure
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Hubs Covariance Structure
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Hubs Covariance Structure
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Hubs Covariance Structure

0 2000 4000 6000 8000 10000

0.
0

0.
1

0.
2

0.
3

0.
4

Root Mean Squared Error

Number of NonZeros

R
oo

t M
ea

n 
S

qu
ar

ed
 E

rr
or

Thresholding
Penalized Likelihood: Equal Penalty
Penalized Likelihood: Inverse S Penalty

26/33



Hubs Covariance Structure
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MA(1) Covariance Structure
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MA(1) Covariance Structure
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MA(1) Covariance Structure
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MA(1) Covariance Structure
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MA(1) Covariance Structure
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Summary

Majorize-Minimization (MM) Algorithm

Difference of Convex Functions (DC) Programming

The runtime of the proposed method is discouraging

The method may work well when the covariance matrix is very sparse
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