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Scientific Motivation

Suppose we have measured p covariates on n subjects. For example:

The expression levels of p genes on n people;
The relative abundances of p species at n locations.

We want to estimate the covariance matrix between those p
covariates.

To determine the gene / gene or species / species interaction.
Specifically, we may want to estimate whether two covariates are
marginally independent (i.e. covariance = 0).
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Statistical Motivation

Suppose X1, ...,Xn ∼iid Np(0,Σ). We want to estimate Σ.

Relatively easy when n >> p. Use MLE.

l(Σ) = −np

2
log(2π)− n

2
log det(Σ)− n

2
tr(Σ−1S),

where S is the sample covariance.

When p is relatively large compared to n, we want estimates that are:

Accurate and precise
Sparse (sparsistent?)
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The Method

Impose an `1 penalty on the ML problem.

Σ̂ = arg min
Σ�0

(log det(Σ) + tr(Σ−1S) + λ‖P ∗Σ‖1)

”∗” is the component-wise multiplication: ‖P ∗Σ‖1 =
∑

i

∑
j PijΣij

P is the weight matrix of the penalty
λ is the ”well-chosen” tuning parameter.
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Majorize-Minimization (MM) Algorithm (Lange, 2004, Hunter and Li, 2005)
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Majorize-Minimization (MM) Algorithm (Lange, 2004, Hunter and Li, 2005)
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Majorize-Minimization (MM) Algorithm (Lange, 2004, Hunter and Li, 2005)
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Majorize-Minimization (MM) Algorithm (Lange, 2004, Hunter and Li, 2005)
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Difference of Convex Functions Programming (An and Tao, 2005)

Suppose we want to minimize g(x) = a(x)− b(x).

a(x) and b(x) are convex functions.

Suppose b′x0(x) is the tangent line of b(x) at x0.

f (x) = a(x)− b′x0(x) is the convex surrogate function.

The convex surrogate function in this case:

f (Σ) = log(det(Σ0)) + tr(Σ−10 Σ)− p + tr(Σ−1S) + λ‖P ∗Σ‖1
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What’s Wrong with the Newton-Raphson Method?

The convex surrogate function is not differentiable.

There is an implicit constraint that Σ is positive semi-definite.
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Simulation Setup

Three methods to consider:
Soft-thresholded sample covariance matrix. (Rothman et al., 2009)

Off-diagonal entries are shrunken towards 0 by an additive factor c,
until they reach 0.

Proposed method with Pij = 1 for i 6= j , Pii = 0

Equal penalties for all off-diagonal entries.

Proposed method with Pij = S−1
ij for i 6= j , Pii = 0

Stronger penalties for entries with small sample covariances.

2 different structures of Σ

n = 100, p = 50

10 repetitions
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Runtime

Intel 4th generation Core i7 processor (2013), 2.0GHz.

25 candidate shrinkage/tuning parameters.

Use 5-fold CV to choose the shrinkage/tuning parameters.

Time for 1 model (125 model fits):

Method Runtime

Thresholding of Sample Covariance < 1 sec
Maximum `1-Penalized Likelihood 10 min

The runtime is proportional to p3.
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Cliques: Graph Structure
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Cliques: ROC
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Cliques: RMSE
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Cliques:Entropy
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Hubs: Graph Structure
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Hubs: ROC
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Hubs: RMSE
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Hubs: Entropy
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Application to Movie Ratings

IMDb rating of 80 top users on 10 movies.

Proposed method with equal penalty.
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Summary

Bien and Tibshirani (2011) proposed an `1 penalized maximum
likelihood method to find precise and sparse estimates of covariance
matrices of normal data.

They proposed methods to solve the non-convex optimization
problem.

Strengths:

Some improvements over an older method through simulations.
Estimates are guaranteed to be positive definite.

Weaknesses:

Are those the estimates we want?
Do the algorithms solve the optimization problem?
The speed of the algorithm is unsatisfactory
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