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Scientific Motivation

@ Suppose we have measured p covariates on n subjects. For example:
e The expression levels of p genes on n people;
e The relative abundances of p species at n locations.

@ We want to estimate the covariance matrix between those p
covariates.
o To determine the gene / gene or species / species interaction.
e Specifically, we may want to estimate whether two covariates are
marginally independent (i.e. covariance = 0).
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Statistical Motivation

@ Suppose X1, ..., X, ~jig Np(0,3). We want to estimate 3.
@ Relatively easy when n >> p. Use MLE.

I(2) = —% log(2rr) — g log det(S) — gtr(E_IS),

where S is the sample covariance.
® When p is relatively large compared to n, we want estimates that are:

e Accurate and precise
e Sparse (sparsistent?)
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The Method

@ Impose an /1 penalty on the ML problem.

3= arg min(log det(X) + tr(X718) + A|P * 3||1)

non

e "x" is the component-wise multiplication: [|[P* Xy =3, > Py
e P is the weight matrix of the penalty
e )\ is the "well-chosen” tuning parameter.
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Majorize-Minimization (MM) Algorithm  (uane. 2004, Hunter ana L. 2005)
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Majorize-Minimization (MM) Algorithm  (uane. 2004, Hunter ana L. 2005)

o
N

2.0

1.5

1.0

0.5
Il

Second Guess

0.0

6/22



Third Guess
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Majorize-Minimization (MM) Algorithm  (uane. 2004, Hunter ana L. 2005)
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Difference of Convex Functions Programming an ana 7o, 2005)

Suppose we want to minimize g(x) = a(x) — b(x).
e a(x) and b(x) are convex functions.

Suppose b) (x) is the tangent line of b(x) at xo.

f(x) = a(x) — b, (x) is the convex surrogate function.

@ The convex surrogate function in this case:

f(2) = log(det(Xo)) + tr(Zg'X) — p+ tr(Z718) + AP+ 2|1
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What's Wrong with the Newton-Raphson Method?

@ The convex surrogate function is not differentiable.

@ There is an implicit constraint that X is positive semi-definite.
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Simulation Setup

@ Three methods to consider:
o Soft-thresholded sample covariance matrix. (Rothman et al., 2009)

o Off-diagonal entries are shrunken towards 0 by an additive factor c,
until they reach 0.

e Proposed method with P;; =1 for i # j, P;j =0
e Equal penalties for all off-diagonal entries.
e Proposed method with P = Sij_1 fori#j, P =0
e Stronger penalties for entries with small sample covariances.
o 2 different structures of X
e n=100, p=50

@ 10 repetitions
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o Intel 4t" generation Core i7 processor (2013), 2.0GHz.

@ 25 candidate shrinkage/tuning parameters.

@ Use 5-fold CV to choose the shrinkage/tuning parameters.

e Time for 1 model (125 model fits):
Method Runtime
Thresholding of Sample Covariance | < 1 sec
Maximum #¢1-Penalized Likelihood 10 min

@ The runtime is proportional to p3.
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Cliques: Graph Structure
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Cliques: ROC

True Positive Rate

e

0.8

0.6

0.4

0.2

0.0

ROC

—— Thresholding
—— Penalized Likelihood: Equal Penalty
—— Penalized Likelihood: Inverse S Penalty

0.0

0.2

T T T T
0.4 0.6 0.8 1.0

False Positve Rate

14/22



LLJ
n
=
o

Cliques

Root Mean Squared Error

—— Thresholding

—— Penalized Likelihood: Equal Penalty

i

Penalized Likelihood: Inverse S Pel

DY
N 505/44
~Aa
VORI

L0

90 S0 0

10113 patenbg ues J00y

€0

20

1000 1500 2000 2500

500

Number of NonZeros

15/22



>
o
(©)
p -
-
c
Ll

Cliques

Entropy Loss

—— Thresholding

Penalized Likelihood: Equal Penalty
—— Penalized Likelihood: Inverse S Penalty

\

7

0s

ov

ss07 Adonug

1000 1500 2000 2500

500

Number of NonZeros

16/22



Hubs: Graph Structure
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Hubs: ROC
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Root Mean Squared Error
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Entropy Loss
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Application to Movie Ratings

@ IMDb rating of 80 top users on 10 movies.
@ Proposed method with equal penalty.

Return ofthe Jedi Far\go

Scréam Indepengence Day

Toy Story  Air Forfe One
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@ Bien and Tibshirani (2011) proposed an ¢ penalized maximum
likelihood method to find precise and sparse estimates of covariance
matrices of normal data.

@ They proposed methods to solve the non-convex optimization
problem.
@ Strengths:
e Some improvements over an older method through simulations.
e Estimates are guaranteed to be positive definite.
@ Weaknesses:

e Are those the estimates we want?
e Do the algorithms solve the optimization problem?
e The speed of the algorithm is unsatisfactory
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