Sparse Estimation of a Covariance Matrix (2011)

Jacob Bien Robert Tibshirani

June 5, 2014 Presented by Sen Zhao

Outline

- Motivation
- 2 The proposed ℓ_1 penalized method
- 4 How to solve the optimization problem
- Simulation examples
- Real data example

Scientific Motivation

- Suppose we have measured p covariates on n subjects. For example:
 - The expression levels of *p* genes on *n* people;
 - The relative abundances of p species at n locations.
- We want to estimate the covariance matrix between those p covariates.
 - To determine the gene / gene or species / species interaction.
 - Specifically, we may want to estimate whether two covariates are marginally independent (i.e. covariance = 0).

Statistical Motivation

- Suppose $X_1,...,X_n \sim_{iid} N_p(\mathbf{0},\Sigma)$. We want to estimate Σ .
- Relatively easy when n >> p. Use MLE.

$$I(\Sigma) = -\frac{np}{2}\log(2\pi) - \frac{n}{2}\log\det(\Sigma) - \frac{n}{2}tr(\Sigma^{-1}S),$$

where \boldsymbol{S} is the sample covariance.

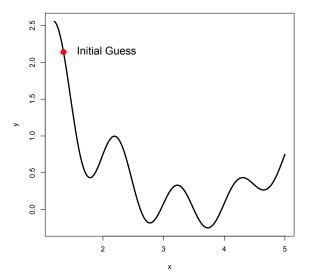
- When p is relatively large compared to n, we want estimates that are:
 - Accurate and precise
 - Sparse (sparsistent?)

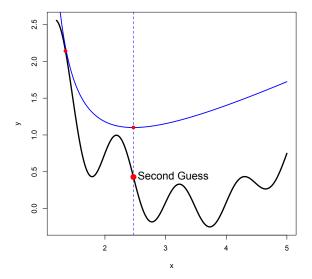
The Method

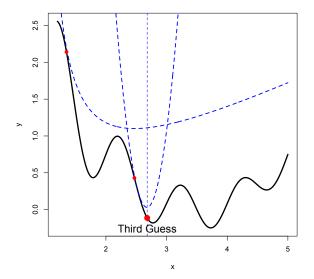
• Impose an ℓ_1 penalty on the ML problem.

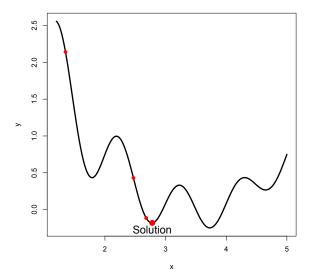
$$\hat{\boldsymbol{\Sigma}} = \arg\min_{\boldsymbol{\Sigma} \succ \boldsymbol{0}} (\log \det(\boldsymbol{\Sigma}) + tr(\boldsymbol{\Sigma}^{-1}\boldsymbol{S}) + \lambda \|\boldsymbol{P} * \boldsymbol{\Sigma}\|_1)$$

- "*" is the component-wise multiplication: $\| {m P} * {m \Sigma} \|_1 = \sum_i \sum_j P_{ij} {m \Sigma}_{ij}$
- $oldsymbol{ heta}$ is the weight matrix of the penalty
- $\bullet~\lambda$ is the "well-chosen" tuning parameter.









Difference of Convex Functions Programming (An and Tao, 2005)

- Suppose we want to minimize g(x) = a(x) b(x).
 - a(x) and b(x) are convex functions.
- Suppose $b'_{x_0}(x)$ is the tangent line of b(x) at x_0 .
- $f(x) = a(x) b'_{x_0}(x)$ is the convex surrogate function.
- The convex surrogate function in this case:

$$f(\Sigma) = \log(\det(\Sigma_0)) + tr(\Sigma_0^{-1}\Sigma) - p + tr(\Sigma^{-1}S) + \lambda \|P * \Sigma\|_1$$

What's Wrong with the Newton-Raphson Method?

- The convex surrogate function is not differentiable.
- ullet There is an implicit constraint that Σ is positive semi-definite.

Simulation Setup

- Three methods to consider:
 - Soft-thresholded sample covariance matrix. (Rothman et al., 2009)
 - Off-diagonal entries are shrunken towards 0 by an additive factor c, until they reach 0.
 - Proposed method with $P_{ij} = 1$ for $i \neq j$, $P_{ii} = 0$
 - Equal penalties for all off-diagonal entries.
 - Proposed method with $P_{ij} = S_{ij}^{-1}$ for $i \neq j$, $P_{ii} = 0$
 - Stronger penalties for entries with small sample covariances.
- 2 different structures of Σ
- n = 100, p = 50
- 10 repetitions

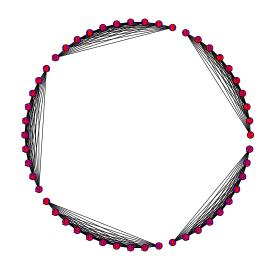
Runtime

- Intel 4th generation Core i7 processor (2013), 2.0GHz.
- 25 candidate shrinkage/tuning parameters.
- Use 5-fold CV to choose the shrinkage/tuning parameters.
- Time for 1 model (125 model fits):

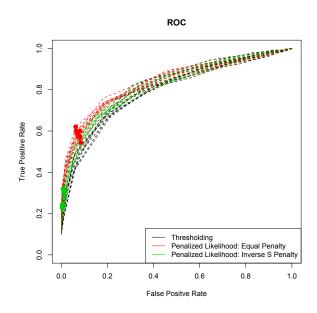
Method	Runtime
Thresholding of Sample Covariance	< 1 sec
Maximum ℓ_1 -Penalized Likelihood	10 min

• The runtime is proportional to p^3 .

Cliques: Graph Structure

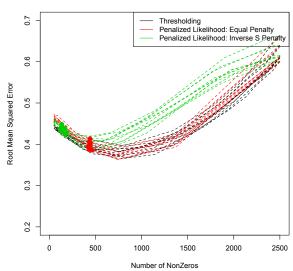


Cliques: ROC

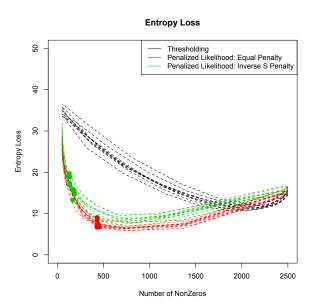


Cliques: RMSE

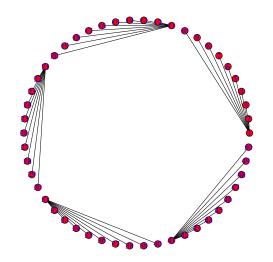




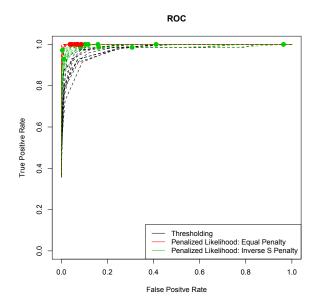
Cliques: Entropy



Hubs: Graph Structure

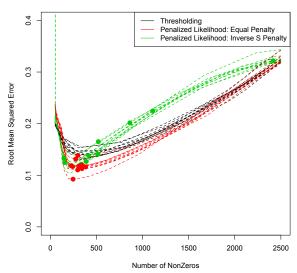


Hubs: ROC

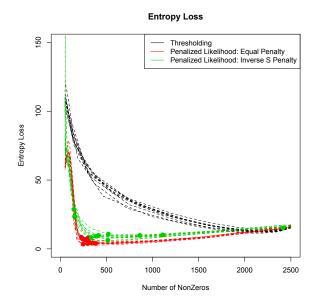


Hubs: RMSE



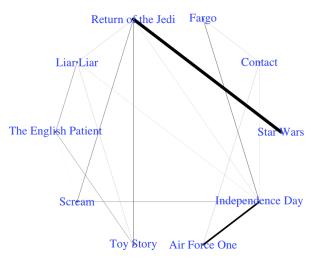


Hubs: Entropy



Application to Movie Ratings

- IMDb rating of 80 top users on 10 movies.
- Proposed method with equal penalty.



Summary

- Bien and Tibshirani (2011) proposed an ℓ_1 penalized maximum likelihood method to find precise and sparse estimates of covariance matrices of normal data.
- They proposed methods to solve the non-convex optimization problem.
- Strengths:
 - Some improvements over an older method through simulations.
 - Estimates are guaranteed to be positive definite.
- Weaknesses:
 - Are those the estimates we want?
 - Do the algorithms solve the optimization problem?
 - The speed of the algorithm is unsatisfactory