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Network theory: notation

Individuals p, q ∈ {1, . . . ,N}.
We observe relations/interactions R(p, q) on pairs of individuals.

Here we assume R(p, q) ∈ {0, 1}, R(p, p) = 0, but do not assume
R(p, q) = R(q, p) (we deal with directed networks).
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Network theory: data representations

p q R(p,q)

1 2 1
2 3 1
3 2 1

Table

1

2

3

Graph

0 1 0
0 0 1
0 1 0



Adjacency matrix
i , j element is

R(i , j)

1

2

3

1 2 3

Adjacency matrix,
black=1, white=0
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The Problem: Scientific Motivation

We believe the relations are a function of unobserved groupings
among the individuals.

We want to recover the groups so we can a) predict new relations or
b) interpret the existing network structure.

Example: Monk network.
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The Problem: Pictures

Figure: Two visualizations of the same binary adjacency matrix. Each filled-in
square represents a directed edge. Left: ordered randomly. Right: ordered by
group membership.
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Brief blockmodel history

1975: CONCOR developed by Harrison White and colleagues

1983: Holland, Laskey & Leinhardt introduce stochastic blockmodel
for blocks known a priori.

1987: Wasserman & Anderson extend to a posteriori estimation.

2004: Kemp, Griffiths & Tenenbaum allow unknown and unlimited
number of blocks in the Infinite Relational Model.
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Infinite Relational Model

Observe binary relations R(p, q) between nodes p, q ∈ {1, . . . ,N}.
Each node p is a member of exactly one block of K total blocks,
K ≤ N unknown. Let zp be an indicator vector of block membership
for node p, i.e. zp = (0, 1, 0).

B is a K × K matrix of block relationships. If p is in block g and q is
in block h then the probability of observing an interaction from node
p to node q is Bgh.

R(p, q) ∼ Bernoulli(zTp Bzq).

For example, if p is in block 3 and q is in block 2 then
P(R(p, q) = 1) = B32.
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Block structure


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The Mixed Membership Stochastic Blockmodel

Previous models assume each node is assumed to belong to exactly
one latent block - e.g. zp = (0, 1, 0, 0).

Instead, in the MMB we assume each node has a distribution πp over
the latent blocks.

For each interaction from p to q, both p and q draw a particular
block to be a part of for the interaction: zp→q ∼ Discrete(πp),
zp←q ∼ Discrete(πq).

Then R(p, q) ∼ Bernoulli(zTp→qBzp←q).

K chosen by BIC.
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Conclusion and next steps

Blockmodels allow clustering nodes from observed network data.

MMB extends blockmodels to let nodes be in different groups to
different extents, but commit to one group during any given
interaction.

Next steps: estimation. . .
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