Rare-Variant Association Testing for Sequencing Data with the Sequence Kernel Association Test (Michael C. Wu et al., 2011)

Xu (Rita) Shi

Presentation 1: Introduction, Motivation and Overview

November 5, 2013

Outline

Challenge in rare-variant association test

Limitations for previous methods

Burden test

C-alpha test

Overview of Sequence Kernel Association Test (SKAT)

Flexible

Computationally efficient

Bonus example

Background Knowledge

• Minor Allele Frequency (MAF)

Frequency at which least common allele occurs in a given population

Rare variant

Variant with a MAF less than 1-5% (in SKAT: 3%)

Genome Wide Association Study (GWAS)

An examination of many **common** genetic variants in different individuals to see if any variant is associated with a trait

Challenge in rare-variant association test

Subject	V1	V2	V3	Disease
1	1	1	0	1
2	0	0	1	1
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0

- Multiple rare variants within the same functional unit e.g. exon of a gene — unexplained genetic component of complex traits (Missing heritability)
- Traditional association test of common variants: underpowered unless sample sizes or effect sizes are very large
- Need to collectively analyze instead of individually

Limitations for previous methods

Burden test: summarize/collapse rare variants in a region

 $I_{ij}=0,\ 1$ or 2 – number of minor alleles at variant j for individual i r_i – number of variants that carry at least one copy of the minor allele n_i – total number of rare variants, $r_i=\sum_{j=1}^{n_i}1(I_{ij}>0)$

Count-Based Proportion: $E(Y_i) = \beta_0 + \lambda \frac{r_i}{n_i} + \beta X_i$

Dichotomize (Cohort Allelic Sum Test, CAST):

$$E(Y_i) = \beta_0 + \lambda 1(r_i > 0) + \beta X_i$$

Weighted Sum Test (WST): logit $P(Y_i = 1) = \beta_0 + r_i^* + \beta X_i + \epsilon_i$, where $r_i^* = \sum_{j=1}^{n_i} \frac{l_{ij}}{w_j}$

• Limitation: assume that all rare variants influence the phenotype in the same direction and with the same magnitude

5

Limitations for previous methods

C-alpha test:

Compares the expected variance to the actual variance of the distribution of allele frequencies

Limitation:

Only apply to case-control data

Cannot adjust for covariate (population stratification)

Need permutation sometimes (computationally expensive)

• Model: $logit\ P(Y_i = 1) = \beta_0 + \sum_{j=1}^{p} b_j G_{ij} + \beta X_i$ or $E(Y_i) = \beta_0 + \sum_{j=1}^{p} b_j G_{ij} + \beta X_i$

i: individual, i = 1, ..., n

j: p genetic variants within a functional region – common and rare

 $X_i = (X_{i1}, X_{i2}, ..., X_{im})$: covariates, e.g. age, gender

 Y_i : phenotype (dichotomous or continuous)

$$G_i = (G_{i1}, G_{i2}, ..., G_{ip})$$
: genotype, $G_{ij} = 0, 1 \text{ or } 2$

- Assumption: $b_j \sim (0, (w_j \sigma)^2)$ $H_0: \mathbf{b} = 0 \Leftrightarrow H_0: \sigma^2 = 0$ (variance-component test)
- · Allows for different directions and magnitudes of genetic effects

• Variance-component score statistic:

$$\begin{split} Q &= (y - \hat{y}_0)' K(y - \hat{y}_0), \hat{y}_0 \text{: fitted value under } H_0 \\ &= ||WG'(y - \hat{y}_0)||^2 \\ \text{kernel } K &= GWWG', \text{weight } W = diag(w_j) \\ &= \sum_{j=1}^p w_j^2 \ ||\textbf{\textit{G}}_j(\textbf{\textit{y}} - \hat{\textbf{\textit{y}}}_0)||^2 \\ &= \sum_{j=1}^p w_j^2 \ \sum_{i=1}^n [G_{ij}(y_i - \hat{y}_0)]^2 \\ &\sim \text{mixture of } \chi_1^2 \end{split}$$
 Weighted sum of individual score statistic $\textbf{\textit{S}}_i = \textbf{\textit{G}}_i(\textbf{\textit{y}} - \hat{\textbf{\textit{y}}}_0)$

Only requires fitting the null model

• SKAT: weigited sum of score statistic

logit
$$P(Y_i = 1) = \beta_0 + \sum_{j=1}^p \mathbf{b}_j G_{ij} + \beta X_i$$

$$Q_j = \sum_{j=1}^p w_j^2 \sum_{i=1}^n [G_{ij}(y_i - \hat{y_0})]^2$$

• Burden: weighted sum of genetic variants:

logit
$$P(Y_i = 1) = \beta_0 + \sum_{j=1}^{p} w_j \beta_B G_{ij} + \beta X_i$$

$$Q = \left[\sum_{i=1}^{n} (y_i - \hat{y_0}) \left(\sum_{j=1}^{p} w_j G_{ij} \right) \right]^2$$

9

• Choice of weight: w_i

$$Beta((MAF_j); 1, 25) \\ Upweight rare-variant \\ downweight common-variant$$

Beta
$$((MAF_j); 1, 1)$$

Uniform[0, 1]

$$Beta((\textit{MAF}_j; 0.1, 0.1)$$
 steeper than $Beta(1, 25)$ at $(0, 0.01)$

Comparison of Beta Distributions

• Choice of kernel function: $(K(G_i, G_{i'}))_{n \times n}$ positive semidefinite

Weighted linear kernel function
$$K(G_i, G_{i'}) = \sum_{j=1}^p w_j^2 G_{ij} G_{i'j}$$

Linear genetic effects

Weighted quadratic kernel
$$K(G_i, G_{i'}) = (1 + \sum_{j=1}^{p} w_j G_{ij} G_{i'j})^2$$

Both linear and quadratic genetic effects $logit\ P(Y_i = 1) = \beta_0 + f(G_i) + \beta X_i,\ H_0: f(G) = 0$

Weighted IBS kernel
$$K(G_i, G_{i'}) = \sum_{j=1}^{p} w_j IBS(G_{ij}, G_{i'j})$$

Identity by state (IBS), number of alleles that share IBS
Free of assumption of additivity, allows for interaction between variants

Sequence Kernel Association Test (SKAT)

- Test for association between phenotype and a collection of rare and common variants in sequencing-based association studies
- Robust to direction and magnitude
- Allow for covariate adjustment
 Works for both continuous and dichotomous phenotype
- Only need to fit null model
 No permutation needed for p-value
- f(G): allow for epistatistic effects (interaction between genetic variants); family data
 Y: regression based, easily extended to survival, longitudinal and multivariate phenotypes

Next Steps

- Estimation of power and sample size
- Simulations; compare to previous methods
- Application to Dallas Heart Study Data? (still waiting for response)
- Math in appendix A

Thank you!

References

- Wu, M. et. al. Rare-variant association testing for sequencing data with the sequence kernel association test. American Journal of Human Genetics, 92: 841-853, 2013.
- Morris, A.P., and Zeggini, E. Anevaluationofstatistical approaches to rare variant analysis in genetic association studies. *Genetic Epidemiology*, 34: 188-193, 2010.
- Li, B., and Leal, S.M. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. *American Journal of Human Genetics*, 83: 311-321, 2008.
- Madsen, B.E., and Browning, S.R. A groupwise association test for rare mutations using a weighted sum statistic. *PLoS Genetics*, 2009 Feb; 5(2):e1000384.
- Neale, B.M. et al. Testing for an unusual distribution of rare variants. *PLoS Genetics*, 2011 Mar;7(3):e1001322.

